Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys

材料科学 金属间化合物 微观结构 冶金 合金 沉淀硬化 硬化(计算) 应变硬化指数 热机械加工 延展性(地球科学) 成核 复合材料 蠕动 热力学 物理 图层(电子)
作者
Bernhard Trink,Irmgard Weißensteiner,Peter J. Uggowitzer,Katharina Strobel,Anna Maria Hofer-Roblyek,Stefan Pogatscher
出处
期刊:Acta Materialia [Elsevier]
卷期号:257: 119160-119160 被引量:6
标识
DOI:10.1016/j.actamat.2023.119160
摘要

This study introduces new alloys, which combine the age-hardening capability of Al-Mg-Si alloys with the microstructure-controlling effect on processing of primary Fe-rich intermetallic phases used in foil stock. In detail, the processing and microstructure–property relations in new crossover aluminum alloys derived from 6xxx and 8xxx foil stock alloys, is shown. A highly Fe-rich intermetallic phase content was deployed to conceptually mimic high scrap content. Fast and slow solidification rates were applied to represent thin strip and direct chill casting, respectively. The effects of adding Fe and Mn to alloy 6016 were examined, while the Si consumed in primary phases was partly adjusted to maintain age-hardening potential. It was shown that upon thermomechanical processing, primary intermetallic phases in the new alloys are finely fragmented and well dispersed, resulting in strong grain refinement and a uniform texture. Attractive combinations of strength and ductility were revealed, also in material processed under direct chill casting conditions. The new alloys’ high elongation values of up to 30%, and their age-hardening response, were similar to those seen in commercial alloy 6016, while their strain hardening capacity was significantly greater. This can be attributed mainly to the formation of geometrically necessary dislocations near primary Fe-rich intermetallic phases. The study discusses microstructure refinement on the basis of particle stimulated nucleation. It uses a simple model to describe the individual contributions to yield strength, including the effect of primary phases. It also models the effect of these particles on increased strain hardening and ductility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然若雁发布了新的文献求助10
1秒前
coc关注了科研通微信公众号
1秒前
双双完成签到,获得积分10
1秒前
瑶625发布了新的文献求助10
1秒前
Strike完成签到,获得积分10
2秒前
调皮纸飞机完成签到,获得积分20
2秒前
董小李完成签到,获得积分10
2秒前
2秒前
研友_8yN60L完成签到,获得积分10
3秒前
zhanzhanzhan发布了新的文献求助10
3秒前
科研通AI5应助自爱悠然采纳,获得10
3秒前
3秒前
Accept应助胡枝子采纳,获得30
3秒前
Strike发布了新的文献求助10
4秒前
Rsoup完成签到,获得积分10
4秒前
5秒前
zz发布了新的文献求助10
5秒前
sfzz完成签到,获得积分10
5秒前
5秒前
如履平川完成签到 ,获得积分10
5秒前
大个应助阳光海云采纳,获得50
5秒前
5秒前
新青年完成签到,获得积分0
5秒前
5秒前
现代的又柔应助研友_8yN60L采纳,获得10
6秒前
6秒前
李健应助傲娇的云朵采纳,获得10
6秒前
6秒前
6秒前
liudiqiu完成签到,获得积分10
6秒前
Akashi完成签到,获得积分10
6秒前
风中珩完成签到 ,获得积分10
7秒前
LIU发布了新的文献求助10
7秒前
7秒前
李知恩完成签到,获得积分10
8秒前
8秒前
EthanChan完成签到,获得积分10
8秒前
8秒前
野性的孤菱完成签到,获得积分10
8秒前
茂密的头发完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740