纳米线
纳米材料基催化剂
材料科学
钯
电化学
催化作用
化学工程
纳米技术
涂层
阴极
纳米颗粒
化学
电极
物理化学
生物化学
工程类
作者
Di‐Ye Wei,Guan-Nan Xing,Hengquan Chen,Xiao-Qun Xie,Huimei Huang,Jin‐Chao Dong,Jing‐Hua Tian,Hua Zhang,Jian‐Feng Li
标识
DOI:10.1016/j.jcis.2023.07.080
摘要
Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI