Calibration set reduction by the selection of a subset containing the best fitting samples showing optimally predictive ability

化学 校准 选择(遗传算法) 还原(数学) 集合(抽象数据类型) 色谱法 生物系统 统计 人工智能 数学 计算机科学 程序设计语言 几何学 生物
作者
Jan P.M. Andries,Yvan Vander Heyden
出处
期刊:Talanta [Elsevier]
卷期号:266: 124943-124943 被引量:9
标识
DOI:10.1016/j.talanta.2023.124943
摘要

Near-infrared (NIR) spectroscopy is a rapid, non-invasive and cost-effective technique, for which sample pre-treatment is often not required. It is applied for both qualitative and quantitative analyses in various application fields. Often, large calibration sets are used, from which informative subsets can be selected without a loss of meaningful information. In this study, a new approach for sample subset selection is proposed and evaluated. The global PLS model, obtained with the original large global calibration set after FCAM-SIG variable selection, is used for the selection of the best fitting subset of calibration samples with optimally predictive ability. This best fitting calibration subset is called the optimally predictive calibration subset (OPCS). After ranking the global calibration samples according to increasing residuals, different enlarging fractions of the ranked calibration set are selected. For each fraction, the optimal predictive ability and the corresponding optimal PLS complexity are determined by cross model validation (CMV). After performing CMV with all fractions, the fraction with the best fitting samples and optimally predictive ability, i.e. the OPCS, is determined. The use of the best fitting samples from the global PLS model results in an OPCS-based model which is similar to the global PLS model and has a similar predictive ability. Because the best fitting samples do not need to be representative for the global calibration set, but only need to support the OPCS-based model, the number of samples in the OPCS model is mostly smaller than that selected by a traditional representative sample subset selection method. The new OPCS approach is tested on three real life NIR data sets with twelve X-y combinations to model. The results show that the number of selected samples obtained by the OPCS approach is statistically significantly lower than (i) that of the most suitable and widely used representative sample selection method of Kennard and Stone, and (ii) that suggested by the guideline that the optimal sample size N for reduced calibration sets should surpass the PLS model complexity A by a factor 12. An additional advantage of the OPCS approach is that no outliers are included in the subset because only the best fitting calibration samples are selected. In the new OPCS approach, two additional innovations are built in: (i) CMV is for the first time applied for sample selection and (ii) in CMV, the "one standard error rule", adopted from "Repeated Double Cross Validation", is for the first time used for the determination of the optimal PLS complexity of the OPCS-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YA发布了新的文献求助10
1秒前
QCZ完成签到,获得积分20
1秒前
赘婿应助尹尹尹采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助Grayball采纳,获得30
2秒前
yan完成签到,获得积分10
3秒前
最初完成签到,获得积分20
4秒前
4秒前
友好若南发布了新的文献求助10
5秒前
Deemo发布了新的文献求助10
5秒前
5秒前
blusky完成签到,获得积分10
5秒前
Jeremiah完成签到,获得积分10
6秒前
碗碗发布了新的文献求助10
8秒前
8秒前
热心芹菜完成签到,获得积分10
9秒前
大美女完成签到,获得积分10
10秒前
所所应助徐玲采纳,获得50
10秒前
luria发布了新的文献求助10
10秒前
10秒前
Hello应助一十六采纳,获得10
11秒前
汉堡包应助ha采纳,获得10
11秒前
Yang关注了科研通微信公众号
12秒前
有魅力听枫完成签到,获得积分10
13秒前
386T发布了新的文献求助10
13秒前
大模型应助飞飞采纳,获得10
16秒前
在水一方应助天真思雁采纳,获得10
16秒前
16秒前
科研通AI2S应助Deemo采纳,获得10
16秒前
李健的粉丝团团长应助Zx采纳,获得10
17秒前
赘婿应助keyan采纳,获得10
17秒前
wanci应助最初采纳,获得10
17秒前
17秒前
orixero应助友好若南采纳,获得10
18秒前
小徐完成签到,获得积分20
19秒前
wshengnan发布了新的文献求助10
20秒前
20秒前
22秒前
飞飞完成签到,获得积分10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256170
求助须知:如何正确求助?哪些是违规求助? 2898255
关于积分的说明 8300702
捐赠科研通 2567460
什么是DOI,文献DOI怎么找? 1394536
科研通“疑难数据库(出版商)”最低求助积分说明 652839
邀请新用户注册赠送积分活动 630511