亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration set reduction by the selection of a subset containing the best fitting samples showing optimally predictive ability

化学 校准 选择(遗传算法) 还原(数学) 集合(抽象数据类型) 色谱法 生物系统 统计 人工智能 数学 计算机科学 程序设计语言 几何学 生物
作者
Jan P.M. Andries,Yvan Vander Heyden
出处
期刊:Talanta [Elsevier]
卷期号:266: 124943-124943 被引量:9
标识
DOI:10.1016/j.talanta.2023.124943
摘要

Near-infrared (NIR) spectroscopy is a rapid, non-invasive and cost-effective technique, for which sample pre-treatment is often not required. It is applied for both qualitative and quantitative analyses in various application fields. Often, large calibration sets are used, from which informative subsets can be selected without a loss of meaningful information. In this study, a new approach for sample subset selection is proposed and evaluated. The global PLS model, obtained with the original large global calibration set after FCAM-SIG variable selection, is used for the selection of the best fitting subset of calibration samples with optimally predictive ability. This best fitting calibration subset is called the optimally predictive calibration subset (OPCS). After ranking the global calibration samples according to increasing residuals, different enlarging fractions of the ranked calibration set are selected. For each fraction, the optimal predictive ability and the corresponding optimal PLS complexity are determined by cross model validation (CMV). After performing CMV with all fractions, the fraction with the best fitting samples and optimally predictive ability, i.e. the OPCS, is determined. The use of the best fitting samples from the global PLS model results in an OPCS-based model which is similar to the global PLS model and has a similar predictive ability. Because the best fitting samples do not need to be representative for the global calibration set, but only need to support the OPCS-based model, the number of samples in the OPCS model is mostly smaller than that selected by a traditional representative sample subset selection method. The new OPCS approach is tested on three real life NIR data sets with twelve X-y combinations to model. The results show that the number of selected samples obtained by the OPCS approach is statistically significantly lower than (i) that of the most suitable and widely used representative sample selection method of Kennard and Stone, and (ii) that suggested by the guideline that the optimal sample size N for reduced calibration sets should surpass the PLS model complexity A by a factor 12. An additional advantage of the OPCS approach is that no outliers are included in the subset because only the best fitting calibration samples are selected. In the new OPCS approach, two additional innovations are built in: (i) CMV is for the first time applied for sample selection and (ii) in CMV, the "one standard error rule", adopted from "Repeated Double Cross Validation", is for the first time used for the determination of the optimal PLS complexity of the OPCS-based models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯通纳完成签到 ,获得积分10
2秒前
FairyLeaf完成签到 ,获得积分10
2秒前
科研小白完成签到 ,获得积分10
5秒前
9秒前
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
AgAin发布了新的文献求助10
9秒前
烟花应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
纪震宇完成签到,获得积分10
11秒前
舒服的聪健完成签到 ,获得积分10
13秒前
Banbanyou完成签到,获得积分10
14秒前
平常的羊完成签到 ,获得积分10
17秒前
大意的以菱完成签到,获得积分10
19秒前
山药汤完成签到,获得积分10
19秒前
clelo完成签到 ,获得积分10
35秒前
健忘涟妖完成签到,获得积分10
36秒前
长的帅完成签到,获得积分10
36秒前
小江不饿完成签到,获得积分10
39秒前
Ye应助贝贝采纳,获得10
40秒前
桐桐应助点点采纳,获得10
42秒前
yinjs158完成签到,获得积分10
44秒前
44秒前
xinyang完成签到 ,获得积分10
48秒前
51秒前
53秒前
大模型应助壮观复天采纳,获得10
56秒前
风中谷南发布了新的文献求助10
58秒前
112222完成签到 ,获得积分10
1分钟前
点点发布了新的文献求助10
1分钟前
momo102610完成签到,获得积分10
1分钟前
清欢完成签到 ,获得积分10
1分钟前
Lina完成签到,获得积分10
1分钟前
科研通AI6.1应助独特微笑采纳,获得100
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209