体内
金黄色葡萄球菌
抗菌剂
联合疗法
微生物学
药理学
耐甲氧西林金黄色葡萄球菌
化学
抗生素
鼻腔给药
医学
生物
细菌
遗传学
生物技术
作者
Seoung‐ryoung Choi,Geoffrey A. Talmon,Kenneth Hearne,Jennifer Woo,Vu L. Truong,Bradley E. Britigan,Prabagaran Narayanasamy
标识
DOI:10.1021/acs.molpharmaceut.3c00223
摘要
There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.
科研通智能强力驱动
Strongly Powered by AbleSci AI