Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis

对接(动物) 化学 自动停靠 AKT1型 山奈酚 柚皮素 药理学 计算生物学 医学 生物化学 类黄酮 蛋白激酶B 生物信息学 信号转导 生物 基因 护理部 抗氧化剂
作者
Lian Xu,Kaidi Fan,Xuemei Qin,Yuetao Liu
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:20 (5): 598-615 被引量:1
标识
DOI:10.2174/1573409919666230720141115
摘要

Background: Traditional Chinese medicine (TCM) Xiaojianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained. Objective: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches. Methods: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ Lin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD). Results: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG. Conclusion: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚明雪完成签到,获得积分10
16秒前
善学以致用应助木光采纳,获得10
20秒前
dracovu完成签到,获得积分10
25秒前
EiketsuChiy完成签到 ,获得积分0
25秒前
没时间解释了完成签到 ,获得积分10
29秒前
光亮若翠完成签到,获得积分10
33秒前
高大的天道完成签到 ,获得积分10
36秒前
排骨炖豆角完成签到 ,获得积分10
42秒前
白华苍松发布了新的文献求助20
47秒前
54秒前
破晓完成签到,获得积分10
59秒前
王治豪发布了新的文献求助10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
1分钟前
文艺的青旋完成签到 ,获得积分10
1分钟前
天真的莺完成签到,获得积分10
1分钟前
NexusExplorer应助lvvvvvv采纳,获得10
1分钟前
clare完成签到 ,获得积分10
1分钟前
Jonsnow完成签到 ,获得积分10
1分钟前
自由飞翔完成签到 ,获得积分10
1分钟前
Deerlu完成签到,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
scarlet完成签到 ,获得积分10
1分钟前
xkhxh完成签到 ,获得积分10
1分钟前
wawawa完成签到,获得积分10
1分钟前
然463完成签到 ,获得积分10
1分钟前
土豪的大白完成签到 ,获得积分10
2分钟前
amar完成签到 ,获得积分0
2分钟前
桐桐应助王治豪采纳,获得10
2分钟前
2分钟前
sougardenist完成签到,获得积分10
2分钟前
NexusExplorer应助王治豪采纳,获得10
2分钟前
mark33442完成签到,获得积分10
2分钟前
allrubbish完成签到,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
Spring完成签到 ,获得积分10
2分钟前
zho关闭了zho文献求助
2分钟前
Wen完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788025
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010