计算机科学
情绪识别
脑电图
代表(政治)
图形
信号(编程语言)
人工智能
语音识别
模式识别(心理学)
认知心理学
心理学
理论计算机科学
神经科学
程序设计语言
法学
政治
政治学
作者
Guixun Xu,Wenhui Guo,Yanjiang Wang
出处
期刊:Journal of Neural Engineering
[IOP Publishing]
日期:2023-06-01
卷期号:20 (3): 036038-036038
被引量:3
标识
DOI:10.1088/1741-2552/ace07d
摘要
Abstract Objective and Significance: This paper proposes an LSTM-enhanced multi-view dynamic emotion graph representation model, which not only integrates the relationship between electrode channels into electroencephalogram (EEG) signal processing to extract multi-dimensional spatial topology information but also retains abundant temporal information of EEG signals. Approach: Specifically, the proposed model mainly includes two branches: a dynamic learning of multiple graph representation information branch and a branch that could learn the time-series information with memory function. First, the preprocessed EEG signals are input into these two branches, and through the former branch, multiple graph representations suitable for EEG signals can be found dynamically, so that the graph feature representations under multiple views are mined. Through the latter branch, it can be determined which information needs to be remembered and which to be forgotten, so as to obtain effective sequence information. Then the features of the two branches are fused via the mean fusion operator to obtain richer and more discriminative EEG spatiotemporal features to improve the performance of signal recognition. Main results: Finally, extensive subject-independent experiments are conducted on SEED, SEED-IV, and Database for Emotion Analysis using Physiological Signals datasets to evaluate model performance. Results reveal the proposed method could better recognize EEG emotional signals compared to other state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI