LSTM-enhanced multi-view dynamical emotion graph representation for EEG signal recognition

计算机科学 情绪识别 脑电图 代表(政治) 图形 信号(编程语言) 人工智能 语音识别 模式识别(心理学) 认知心理学 心理学 理论计算机科学 神经科学 程序设计语言 法学 政治 政治学
作者
Guixun Xu,Wenhui Guo,Yanjiang Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (3): 036038-036038 被引量:3
标识
DOI:10.1088/1741-2552/ace07d
摘要

Abstract Objective and Significance: This paper proposes an LSTM-enhanced multi-view dynamic emotion graph representation model, which not only integrates the relationship between electrode channels into electroencephalogram (EEG) signal processing to extract multi-dimensional spatial topology information but also retains abundant temporal information of EEG signals. Approach: Specifically, the proposed model mainly includes two branches: a dynamic learning of multiple graph representation information branch and a branch that could learn the time-series information with memory function. First, the preprocessed EEG signals are input into these two branches, and through the former branch, multiple graph representations suitable for EEG signals can be found dynamically, so that the graph feature representations under multiple views are mined. Through the latter branch, it can be determined which information needs to be remembered and which to be forgotten, so as to obtain effective sequence information. Then the features of the two branches are fused via the mean fusion operator to obtain richer and more discriminative EEG spatiotemporal features to improve the performance of signal recognition. Main results: Finally, extensive subject-independent experiments are conducted on SEED, SEED-IV, and Database for Emotion Analysis using Physiological Signals datasets to evaluate model performance. Results reveal the proposed method could better recognize EEG emotional signals compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽仙人掌关注了科研通微信公众号
刚刚
刚刚
chitin chu完成签到,获得积分10
3秒前
某某完成签到,获得积分10
3秒前
buno应助guojingjing采纳,获得10
3秒前
丘比特应助CQ采纳,获得10
4秒前
4秒前
4秒前
5秒前
墨易发布了新的文献求助10
5秒前
7秒前
Di完成签到 ,获得积分10
7秒前
Dr.Dream完成签到,获得积分10
8秒前
8秒前
9秒前
咖妃发布了新的文献求助10
10秒前
CipherSage应助liyao90911采纳,获得10
10秒前
香蕉觅云应助风中音响采纳,获得30
10秒前
wln发布了新的文献求助10
10秒前
Byron发布了新的文献求助10
10秒前
11秒前
11秒前
绾绾发布了新的文献求助10
12秒前
小会完成签到,获得积分10
12秒前
12秒前
简单的幻然完成签到,获得积分10
12秒前
可爱的函函应助超级丸子采纳,获得10
13秒前
14秒前
14秒前
霸气的忆丹完成签到,获得积分10
14秒前
咖妃完成签到,获得积分10
16秒前
ziyuexu发布了新的文献求助10
16秒前
maox1aoxin应助ghostR采纳,获得30
17秒前
17秒前
科研通AI2S应助简单的幻然采纳,获得10
17秒前
rick3455发布了新的文献求助10
18秒前
19秒前
点点123完成签到,获得积分10
19秒前
wln完成签到,获得积分20
20秒前
21秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212591
求助须知:如何正确求助?哪些是违规求助? 2861547
关于积分的说明 8129264
捐赠科研通 2527513
什么是DOI,文献DOI怎么找? 1361265
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615776