LSTM-enhanced multi-view dynamical emotion graph representation for EEG signal recognition

计算机科学 情绪识别 脑电图 代表(政治) 图形 信号(编程语言) 人工智能 语音识别 模式识别(心理学) 认知心理学 心理学 理论计算机科学 神经科学 程序设计语言 法学 政治 政治学
作者
Guixun Xu,Wenhui Guo,Yanjiang Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (3): 036038-036038 被引量:3
标识
DOI:10.1088/1741-2552/ace07d
摘要

Abstract Objective and Significance: This paper proposes an LSTM-enhanced multi-view dynamic emotion graph representation model, which not only integrates the relationship between electrode channels into electroencephalogram (EEG) signal processing to extract multi-dimensional spatial topology information but also retains abundant temporal information of EEG signals. Approach: Specifically, the proposed model mainly includes two branches: a dynamic learning of multiple graph representation information branch and a branch that could learn the time-series information with memory function. First, the preprocessed EEG signals are input into these two branches, and through the former branch, multiple graph representations suitable for EEG signals can be found dynamically, so that the graph feature representations under multiple views are mined. Through the latter branch, it can be determined which information needs to be remembered and which to be forgotten, so as to obtain effective sequence information. Then the features of the two branches are fused via the mean fusion operator to obtain richer and more discriminative EEG spatiotemporal features to improve the performance of signal recognition. Main results: Finally, extensive subject-independent experiments are conducted on SEED, SEED-IV, and Database for Emotion Analysis using Physiological Signals datasets to evaluate model performance. Results reveal the proposed method could better recognize EEG emotional signals compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小豆芽儿发布了新的文献求助10
刚刚
WNL发布了新的文献求助10
1秒前
Ngu完成签到,获得积分10
1秒前
科研通AI5应助冷艳后妈采纳,获得10
1秒前
陶1122发布了新的文献求助10
1秒前
万能图书馆应助乐观期待采纳,获得30
1秒前
krystal完成签到,获得积分10
1秒前
学术大小拿完成签到,获得积分10
2秒前
迪迦完成签到,获得积分10
2秒前
3秒前
乖乖发布了新的文献求助10
3秒前
3秒前
song24517发布了新的文献求助20
3秒前
顺利琦完成签到,获得积分10
4秒前
李子发布了新的文献求助10
4秒前
pbf完成签到,获得积分10
4秒前
4秒前
lyn发布了新的文献求助30
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Twikky完成签到,获得积分10
4秒前
柚子皮应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Akim应助夏末采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
迟大猫应助想学习采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
6秒前
期刊应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678