Development and validation of a convolutional neural network model for diagnosing Helicobacter pylori infections with endoscopic images: a multicenter study

医学 内科学 幽门螺杆菌 胃肠病学 概化理论 卷积神经网络 队列 内窥镜检查 人工智能 计算机科学 数学 统计
作者
Ji Yeon Seo,Hotak Hong,Wi‐Sun Ryu,Dongmin Kim,Jaeyoung Chun,Min‐Sun Kwak
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:97 (5): 880-888.e2 被引量:6
标识
DOI:10.1016/j.gie.2023.01.007
摘要

Background and Aims Insufficient validation limits the generalizability of deep learning in diagnosing Helicobacter pylori (H. pylori) infection with endoscopic images. The aim of this study was to develop a deep learning model for the diagnosis of H. pylori infection using endoscopic images and validate the model with internal and external datasets. Methods A convolutional neural network (CNN) model was developed based on a training dataset comprising 13,403 endoscopic images from 952 patients who underwent endoscopy at Seoul National University Hospital Gangnam Center. Internal validation was performed using a separate dataset comprising the images of 411 individuals of Korean descent and 131 of non-Korean descent. External validation was performed with the images of 160 patients in Gangnam Severance Hospital. Gradient-weighted class activation mapping (Grad-CAM) was performed to visually explain the model. Results In predicting H. pylori ever-infected status, the sensitivity, specificity and accuracy of internal validation for people of Korean descent were 0.96 (95% CI 0.93–0.98), 0.90 (95% CI 0.85–0.95), and 0.94 (95% CI, 0.91-0.96), respectively. In the internal validation for people of non-Korean descent, the sensitivity, specificity and accuracy in predicting H. pylori ever-infected status were 0.92 (95% CI, 0.86-0.98), 0.79 (95% CI, 0.67-0.91) and 0.88 (95% CI, 0.82-0.93), respectively. In the external validation cohort, they were 0.86 (95% CI, 0.80-0.93), 0.88 (95% CI, 0.79-0.96), and 0.87 (95% CI, 0.82-0.92), respectively, when performing two-group categorization. The Grad-CAM showed that the CNN model captured the characteristic findings of each group. Conclusions This CNN model for diagnosing H. pylori infection showed good overall performance in internal and external validation datasets, particularly in categorizing patients into the never- versus ever-infected groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早起发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
佟韩发布了新的文献求助10
2秒前
今后应助hahah采纳,获得10
2秒前
斯文败类应助taotungtzu采纳,获得10
2秒前
bob发布了新的文献求助10
3秒前
九柒发布了新的文献求助10
4秒前
4秒前
4秒前
赘婿应助明理幻梅采纳,获得10
4秒前
VEM(syh)发布了新的文献求助200
5秒前
彧辰完成签到 ,获得积分10
5秒前
遥远发布了新的文献求助10
5秒前
小元发布了新的文献求助10
6秒前
6秒前
大力的无声完成签到,获得积分10
6秒前
6秒前
善学以致用应助白敬亭采纳,获得10
6秒前
6秒前
科研通AI2S应助kaka采纳,获得10
6秒前
科研通AI5应助迅速又菡采纳,获得10
6秒前
烟花应助佟韩采纳,获得10
7秒前
英姑应助helong1208采纳,获得10
7秒前
可爱冰绿完成签到,获得积分10
8秒前
2899发布了新的文献求助10
8秒前
神不楞登完成签到 ,获得积分10
8秒前
8秒前
JamesPei应助敏感的手机采纳,获得10
8秒前
细腻的山水完成签到 ,获得积分10
8秒前
kup完成签到 ,获得积分10
9秒前
香蕉觅云应助完美妙海采纳,获得10
9秒前
华仔应助BBA采纳,获得10
9秒前
10秒前
Akim应助BallQ采纳,获得10
10秒前
ASC发布了新的文献求助10
11秒前
JamesTYD发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The future in the management of patients with asymptomatic carotid artery stenosis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702622
求助须知:如何正确求助?哪些是违规求助? 3252430
关于积分的说明 9879649
捐赠科研通 2964498
什么是DOI,文献DOI怎么找? 1625719
邀请新用户注册赠送积分活动 770222
科研通“疑难数据库(出版商)”最低求助积分说明 742888