Machine Learning-assisted Melamine-Cu Nanozyme and Cholinesterase Integrated Array for Multi-category Pesticide Intelligent Recognition

三聚氰胺 乙酰胆碱酯酶 杀虫剂 胆碱酯酶 多菌灵 生物传感器 计算机科学 过氧化物酶 对氧磷 化学 人工智能 生物系统 生物化学 有机化学 杀菌剂 生物 植物 药理学 农学
作者
Donghui Song,Yuting Zou,Tian Tian,Yu Ma,Hui Huang,Yongxin Li
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:266: 116747-116747
标识
DOI:10.1016/j.bios.2024.116747
摘要

Expanding target pesticide species and intelligent pesticide recognition were formidable challenges for existing cholinesterase inhibition methods. To improve this status, multi-active Mel-Cu nanozyme with mimetic Cu-N sites was prepared for the first time. It exhibited excellent laccase-like and peroxidase-like activities, and can respond to some pesticides beyond the detected range of enzyme inhibition methods, such as glyphosate, carbendazim, fumonisulfuron, etc., through coordination and hydrogen bonding. Inspired by the signal complementarity of Mel-Cu and cholinesterase, an integrated sensor array based on the Mel-Cu laccase-like activity, Mel-Cu peroxidase-like activity, acetylcholinesterase, and butyrylcholinesterase was creatively constructed. And it could successfully discriminate 12 pesticides at 0.5-50 μg/mL, which was significantly superior to traditional enzyme inhibition methods. Moreover, on the basis of above array, a unified stepwise prediction model was built using classification and regression algorithms in machine learning, which enabled concentration-independent qualitative identification as well as precise quantitative determination of multiple pesticide targets, simultaneously. The sensing accuracy was verified by blind sample analysis, in which the species was correctly identified and the concentration was predicted within 10% error, suggesting great intelligent recognition ability. Further, the proposed method also demonstrated significant immunity to interference and practical application feasibility, providing powerful means for pesticide residue analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助吃草小河马完成签到,获得积分10
刚刚
我是老大应助姜且采纳,获得10
2秒前
3秒前
Nathan完成签到 ,获得积分10
6秒前
6秒前
熹微发布了新的文献求助10
7秒前
小火孩发布了新的文献求助10
7秒前
标致小甜瓜完成签到,获得积分10
7秒前
马鑫麟完成签到,获得积分20
11秒前
默默的井发布了新的文献求助10
12秒前
shaco发布了新的文献求助10
12秒前
和谐的迎天完成签到,获得积分10
13秒前
熹微完成签到,获得积分10
17秒前
Akim应助sdahjjyk采纳,获得10
18秒前
18秒前
瞬华完成签到 ,获得积分10
18秒前
情怀应助酸菜鱼火锅采纳,获得10
18秒前
ww完成签到,获得积分10
19秒前
不配.应助开朗的觅柔采纳,获得20
19秒前
20秒前
chigga完成签到,获得积分10
22秒前
17完成签到 ,获得积分10
22秒前
23秒前
chigga发布了新的文献求助10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
浅尝离白应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
26秒前
星辰大海应助拼搏向上采纳,获得10
26秒前
taipingyang完成签到,获得积分10
27秒前
wanci应助太叔夜南采纳,获得10
28秒前
Clytze完成签到,获得积分10
28秒前
Clytze发布了新的文献求助10
31秒前
Mason完成签到,获得积分10
31秒前
小马甲应助小火孩采纳,获得10
31秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870