Water Structures and Anisotropic Dynamics at Pt(211)/Water Interface Revealed by Machine Learning Molecular Dynamics

动力学(音乐) 分子动力学 接口(物质) 各向异性 化学物理 计算机科学 材料科学 化学 物理 计算化学 光学 并行计算 气泡 最大气泡压力法 声学
作者
Fei-Teng Wang,Xiandong Liu,Jun Cheng
出处
期刊:Materials futures [IOP Publishing]
卷期号:3 (4): 041001-041001
标识
DOI:10.1088/2752-5724/ad7619
摘要

Abstract Water molecules at solid–liquid interfaces play a pivotal role in governing interfacial phenomena that underpin electrochemical and catalytic processes. The organization and behavior of these interfacial water molecules can significantly influence the solvation of ions, the adsorption of reactants, and the kinetics of electrochemical reactions. The stepped structure of Pt surfaces can alter the properties of the interfacial water, thereby modulating the interfacial environment and the resulting surface reactivity. Revealing the in situ details of water structures at these stepped Pt/water interfaces is crucial for understanding the fundamental mechanisms that drive diverse applications in energy conversion and material science. In this work, we have developed a machine learning potential for the Pt(211)/water interface and performed machine learning molecular dynamics simulations. Our findings reveal distinct types of chemisorbed and physisorbed water molecules within the adsorbed layer. Importantly, we identified three unique water pairs that were not observed in the basal plane/water interfaces, which may serve as key precursors for water dissociation. These interfacial water structures contribute to the anisotropic dynamics of the adsorbed water layer. Our study provides molecular-level insights into the anisotropic nature of water behavior at stepped Pt/water interfaces, which can influence the reorientation and distribution of intermediates, molecules, and ions—crucial aspects for understanding electrochemical and catalytic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山丘完成签到,获得积分10
1秒前
DrYang完成签到,获得积分10
1秒前
科研通AI5应助微笑采纳,获得10
1秒前
2秒前
务实盼海完成签到 ,获得积分20
2秒前
小张张完成签到,获得积分10
2秒前
YAN完成签到,获得积分10
2秒前
隐形曼青应助卑以自牧采纳,获得10
3秒前
脑洞疼应助xieunx采纳,获得10
3秒前
wjw关闭了wjw文献求助
3秒前
夜白完成签到,获得积分0
3秒前
Cynthia完成签到,获得积分10
3秒前
美丽小蕾完成签到,获得积分10
3秒前
心花怒放完成签到,获得积分20
3秒前
林上草应助xzn1123采纳,获得10
4秒前
qwt_hello发布了新的文献求助10
5秒前
6秒前
科研虎完成签到,获得积分10
6秒前
大眼的平松完成签到,获得积分10
6秒前
丶呆久自然萌完成签到,获得积分10
6秒前
6秒前
7秒前
淡淡的夜山完成签到,获得积分10
7秒前
SYLH应助阿勒泰采纳,获得10
8秒前
8秒前
8秒前
菊菊关注了科研通微信公众号
9秒前
9秒前
9秒前
水星MERCURY应助雨夜星空采纳,获得10
10秒前
10秒前
10秒前
11秒前
九九完成签到,获得积分10
11秒前
dwl完成签到 ,获得积分10
11秒前
懵懂的尔风完成签到 ,获得积分10
11秒前
11秒前
456完成签到,获得积分10
11秒前
科研通AI5应助以恒之心采纳,获得10
12秒前
易哒哒发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762