GREMI: An Explainable Multi-Omics Integration Framework for Enhanced Disease Prediction and Module Identification

计算机科学 机器学习 鉴定(生物学) 人工智能 特征(语言学) 生物医学 相关性(法律) 数据挖掘 透视图(图形) 生物信息学 政治学 语言学 植物 生物 哲学 法学
作者
Hong Liang,Haoran Luo,Zhiling Sang,Miao Jia,Xiaohan Jiang,Zheng Wang,Shan Cong,Xiaohui Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6983-6996
标识
DOI:10.1109/jbhi.2024.3439713
摘要

Multi-omics integration has demonstrated promising performance in complex disease prediction. However, existing research typically focuses on maximizing prediction accuracy, while often neglecting the essential task of discovering meaningful biomarkers. This issue is particularly important in biomedicine, as molecules often interact rather than function individually to influence disease outcomes. To this end, we propose a two-phase framework named GREMI to assist multi-omics classification and explanation. In the prediction phase, we propose to improve prediction performance by employing a graph attention architecture on sample-wise co-functional networks to incorporate biomolecular interaction information for enhanced feature representation, followed by the integration of a joint-late mixed strategy and the true-class-probability block to adaptively evaluate classification confidence at both feature and omics levels. In the interpretation phase, we propose a multi-view approach to explain disease outcomes from the interaction module perspective, providing a more intuitive understanding and biomedical rationale. We incorporate Monte Carlo tree search (MCTS) to explore local-view subgraphs and pinpoint modules that highly contribute to disease characterization from the global-view. Extensive experiments demonstrate that the proposed framework outperforms state-of-the-art methods in seven different classification tasks, and our model effectively addresses data mutual interference when the number of omics types increases. We further illustrate the functional- and disease-relevance of the identified modules, as well as validate the classification performance of discovered modules using an independent cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助涵泽采纳,获得10
刚刚
2秒前
科研通AI2S应助孤独箴言采纳,获得30
4秒前
5秒前
Jc发布了新的文献求助10
7秒前
852应助冬不拉的红糖纸采纳,获得10
8秒前
8秒前
9秒前
眼睛大莆完成签到,获得积分10
10秒前
ll应助Yang采纳,获得10
10秒前
童年的秋千完成签到,获得积分10
13秒前
眼睛大莆发布了新的文献求助10
14秒前
walx完成签到,获得积分10
15秒前
beifa完成签到,获得积分20
15秒前
Jamin完成签到,获得积分10
16秒前
srf0602.发布了新的文献求助10
16秒前
积极代芙完成签到,获得积分10
17秒前
上官若男应助天真的香寒采纳,获得10
18秒前
怀石逾沙完成签到,获得积分10
18秒前
LVVVB完成签到,获得积分10
20秒前
21秒前
轩轩发布了新的文献求助10
24秒前
24秒前
24秒前
mizhou完成签到,获得积分20
25秒前
Zhangll完成签到,获得积分10
27秒前
27秒前
yaya发布了新的文献求助10
28秒前
顾矜应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450