GREMI: an Explainable Multi-omics Integration Framework for Enhanced Disease Prediction and Module Identification

计算机科学 机器学习 鉴定(生物学) 人工智能 特征(语言学) 生物医学 相关性(法律) 数据挖掘 生物信息学 植物 生物 语言学 哲学 政治学 法学
作者
Hong Liang,Haoran Luo,Zhiling Sang,Miao Jia,Xiaohan Jiang,Zheng Wang,Shan Cong,Xiaohui Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6983-6996
标识
DOI:10.1109/jbhi.2024.3439713
摘要

Multi-omics integration has demonstrated promising performance in complex disease prediction. However, existing research typically focuses on maximizing prediction accuracy, while often neglecting the essential task of discovering meaningful biomarkers. This issue is particularly important in biomedicine, as molecules often interact rather than function individually to influence disease outcomes. To this end, we propose a two-phase framework named GREMI to assist multi-omics classification and explanation. In the prediction phase, we propose to improve prediction performance by employing a graph attention architecture on sample-wise co-functional networks to incorporate biomolecular interaction information for enhanced feature representation, followed by the integration of a joint-late mixed strategy and the true-class-probability block to adaptively evaluate classification confidence at both feature and omics levels. In the interpretation phase, we propose a multi-view approach to explain disease outcomes from the interaction module perspective, providing a more intuitive understanding and biomedical rationale. We incorporate Monte Carlo tree search (MCTS) to explore local-view subgraphs and pinpoint modules that highly contribute to disease characterization from the global-view. Extensive experiments demonstrate that the proposed framework outperforms state-of-the-art methods in seven different classification tasks, and our model effectively addresses data mutual interference when the number of omics types increases. We further illustrate the functional- and disease-relevance of the identified modules, as well as validate the classification performance of discovered modules using an independent cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穷且爱睡不坠青云之志完成签到,获得积分10
刚刚
1秒前
子车茗应助renhu采纳,获得30
1秒前
3秒前
chloe发布了新的文献求助10
5秒前
共享精神应助犹豫豌豆采纳,获得10
5秒前
YULIA应助Debra采纳,获得10
5秒前
爆米花应助钧钧钧采纳,获得10
7秒前
乐于助人大好人完成签到 ,获得积分10
7秒前
甜蜜谷蕊应助欣慰的水瑶采纳,获得30
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
修仙应助科研通管家采纳,获得10
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得150
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
changxu应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
白鸽应助科研通管家采纳,获得50
10秒前
小新完成签到 ,获得积分10
11秒前
111关闭了111文献求助
12秒前
13秒前
13秒前
语霖仙完成签到,获得积分10
13秒前
论高等数学的无用性完成签到 ,获得积分10
15秒前
细心可乐完成签到 ,获得积分10
16秒前
氯雷他定完成签到 ,获得积分10
17秒前
jbear发布了新的文献求助10
17秒前
18秒前
aff发布了新的文献求助10
18秒前
科研通AI2S应助小白采纳,获得10
18秒前
吴红波完成签到,获得积分10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3235891
求助须知:如何正确求助?哪些是违规求助? 2881710
关于积分的说明 8223348
捐赠科研通 2549703
什么是DOI,文献DOI怎么找? 1378598
科研通“疑难数据库(出版商)”最低求助积分说明 648343
邀请新用户注册赠送积分活动 623846