Catalytic Cycle Network: Boosting CO2 Hydrogenation to Propane

丙烷 催化作用 Boosting(机器学习) 催化循环 化学 业务 计算机科学 环境科学 有机化学 人工智能
作者
Lizhi Zhang,Miao Li,Guo‐Bo Li,Wenming Liu,Ye Liang,Kun Liu,Qingxiang Ma,Honggen Peng
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:: 124372-124372
标识
DOI:10.1016/j.apcatb.2024.124372
摘要

The utilization of CO2 hydrogenation to manufacture high-value chemicals is a viable strategy for achieving carbon neutrality. However, the reaction mechanisms still need to be further developed to improve catalytic efficiency. In this context, we report a bifunctional ZnZrOx/SSZ-13 catalyst, the conversion of CO2 reached 44.7%, while the selectivity for CO was maintained at 16.7%, and remarkably, the selectivity and yield for propane increased to 70.3% and 26.1%, respectively. A "catalytic cycle network" that involve H2O generated in situ by tandem reaction is suggested, and its mechanism confirmed through in situ DRIFTS spectroscopy, density functional theory (DFT) calculations, studies on water diffusion, and empirical evidence. This innovative mechanism, which departs from traditional tandem catalysis, signals a paradigm shift in the field of catalytic chemistry. At low space velocities, water generated during the reaction contributes by mass transfer diffusion to promote the tandem reactions. This phenomenon establishes a positive feedback loop in which "reaction-produced H2O promotes the reaction" and integrates with tandem reactions to form a "catalytic cycle network". Such complex, multi-level interactions significantly improve the hydrogenation of CO2. Subsequent studies of the structure-activity relationship between zeolite properties and bifunctional catalyst performance reveal a synergistic effect of zeolite acidity and hydrophobicity on reaction performance, which together determine the efficiency of the reaction. These findings provide a solid foundation for the design of effective catalysts for CO2 hydrogenation and have the potential to transform the field, thereby making a significant contribution to sustainable chemical synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
轻松冰旋应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
所所应助搞怪莫茗采纳,获得10
1秒前
吃水果的老虎完成签到,获得积分10
3秒前
4秒前
xiaotu完成签到,获得积分10
5秒前
周裕川发布了新的文献求助10
7秒前
领导范儿应助111采纳,获得10
7秒前
course完成签到,获得积分10
8秒前
practice完成签到,获得积分20
8秒前
8秒前
yiyiyi完成签到,获得积分10
9秒前
222完成签到,获得积分10
10秒前
11秒前
西瓜发布了新的文献求助10
12秒前
852应助搞怪莫茗采纳,获得10
13秒前
乐乐应助Alex采纳,获得10
13秒前
可爱的函函应助lu采纳,获得10
13秒前
14秒前
14秒前
桐桐应助橙子采纳,获得10
16秒前
111发布了新的文献求助10
18秒前
黑眼圈完成签到,获得积分20
18秒前
凌霄同学发布了新的文献求助10
20秒前
李爱国应助bfz50采纳,获得10
21秒前
22秒前
24秒前
克林沙星完成签到,获得积分20
25秒前
26秒前
zzz2193发布了新的文献求助10
27秒前
FashionBoy应助圆圆的波仔采纳,获得10
27秒前
乐乐应助搞怪莫茗采纳,获得10
27秒前
Alex发布了新的文献求助10
27秒前
KEHUGE发布了新的文献求助20
28秒前
情怀应助cabbage008采纳,获得10
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141865
求助须知:如何正确求助?哪些是违规求助? 2792802
关于积分的说明 7804260
捐赠科研通 2449115
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626748
版权声明 601265