Catalytic Cycle Network: Boosting CO2 Hydrogenation to Propane

丙烷 催化作用 Boosting(机器学习) 催化循环 化学 业务 计算机科学 环境科学 有机化学 人工智能
作者
Lizhi Zhang,Miao Li,Guo‐Bo Li,Wenming Liu,Ye Liang,Kun Liu,Qingxiang Ma,Honggen Peng
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:: 124372-124372
标识
DOI:10.1016/j.apcatb.2024.124372
摘要

The utilization of CO2 hydrogenation to manufacture high-value chemicals is a viable strategy for achieving carbon neutrality. However, the reaction mechanisms still need to be further developed to improve catalytic efficiency. In this context, we report a bifunctional ZnZrOx/SSZ-13 catalyst, the conversion of CO2 reached 44.7%, while the selectivity for CO was maintained at 16.7%, and remarkably, the selectivity and yield for propane increased to 70.3% and 26.1%, respectively. A "catalytic cycle network" that involve H2O generated in situ by tandem reaction is suggested, and its mechanism confirmed through in situ DRIFTS spectroscopy, density functional theory (DFT) calculations, studies on water diffusion, and empirical evidence. This innovative mechanism, which departs from traditional tandem catalysis, signals a paradigm shift in the field of catalytic chemistry. At low space velocities, water generated during the reaction contributes by mass transfer diffusion to promote the tandem reactions. This phenomenon establishes a positive feedback loop in which "reaction-produced H2O promotes the reaction" and integrates with tandem reactions to form a "catalytic cycle network". Such complex, multi-level interactions significantly improve the hydrogenation of CO2. Subsequent studies of the structure-activity relationship between zeolite properties and bifunctional catalyst performance reveal a synergistic effect of zeolite acidity and hydrophobicity on reaction performance, which together determine the efficiency of the reaction. These findings provide a solid foundation for the design of effective catalysts for CO2 hydrogenation and have the potential to transform the field, thereby making a significant contribution to sustainable chemical synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空舒完成签到,获得积分10
刚刚
jaslek发布了新的文献求助10
1秒前
研友_zLa2pn发布了新的文献求助10
2秒前
千阳发布了新的文献求助30
2秒前
热心平萱完成签到,获得积分20
5秒前
zhangbh1990完成签到 ,获得积分10
6秒前
阿冰发布了新的文献求助10
6秒前
orixero应助兰子采纳,获得10
6秒前
7秒前
飞飞发布了新的文献求助10
8秒前
xin完成签到,获得积分10
8秒前
星辰大海应助Lin采纳,获得10
8秒前
上善若水发布了新的文献求助10
11秒前
一一驳回了田様应助
13秒前
我是老大应助jaslek采纳,获得10
13秒前
annnnnnd完成签到 ,获得积分10
14秒前
丘比特应助阿冰采纳,获得10
14秒前
勤劳师发布了新的文献求助10
14秒前
认真又晴完成签到,获得积分10
16秒前
千阳完成签到 ,获得积分10
17秒前
whs发布了新的文献求助10
18秒前
领导范儿应助jufefit采纳,获得10
18秒前
19秒前
20秒前
南瓜完成签到,获得积分10
20秒前
21秒前
22秒前
今后应助姚珍珠采纳,获得10
23秒前
山隐隐水迢迢应助阿坤采纳,获得30
23秒前
尉迟衣发布了新的文献求助10
24秒前
粽子发布了新的文献求助10
27秒前
搞怪山晴发布了新的文献求助10
27秒前
29秒前
Jasper应助121采纳,获得10
30秒前
航航航zzzz完成签到,获得积分10
30秒前
星辰大海应助鸿鹄采纳,获得10
30秒前
研友_zLa2pn完成签到,获得积分10
30秒前
玛雅太阳神完成签到,获得积分10
31秒前
32秒前
宝宝发布了新的文献求助10
32秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996607
求助须知:如何正确求助?哪些是违规求助? 2657010
关于积分的说明 7191607
捐赠科研通 2292494
什么是DOI,文献DOI怎么找? 1215350
科研通“疑难数据库(出版商)”最低求助积分说明 593153
版权声明 592795