Lightweight tomato ripeness detection algorithm based on the improved RT-DETR

成熟度 计算机科学 块(置换群论) 特征(语言学) 算法 人工智能 数学 成熟 语言学 化学 哲学 几何学 食品科学
作者
Sen Wang,Huiping Jiang,Jixiang Yang,Xuan Ma,Jiamin Chen,Zhongjie Li,Xingqun Tang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:5
标识
DOI:10.3389/fpls.2024.1415297
摘要

Tomatoes, widely cherished for their high nutritional value, necessitate precise ripeness identification and selective harvesting of mature fruits to significantly enhance the efficiency and economic benefits of tomato harvesting management. Previous studies on intelligent harvesting often focused solely on identifying tomatoes as the target, lacking fine-grained detection of tomato ripeness. This deficiency leads to the inadvertent harvesting of immature and rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven illumination, occlusion by leaves, and fruit overlap hinder the precise assessment of tomato ripeness by robotic systems. Simultaneously, the demand for high accuracy and rapid response in tomato ripeness detection is compounded by the need for making the model lightweight to mitigate hardware costs. This study proposes a lightweight model named PDSI-RTDETR to address these challenges. Initially, the PConv_Block module, integrating partial convolution with residual blocks, replaces the Basic_Block structure in the legacy backbone to alleviate computing load and enhance feature extraction efficiency. Subsequently, a deformable attention module is amalgamated with intra-scale feature interaction structure, bolstering the capability to extract detailed features for fine-grained classification. Additionally, the proposed slimneck-SSFF feature fusion structure, merging the Scale Sequence Feature Fusion framework with a slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce volume of computation and inference latency. Lastly, by amalgamating Inner-IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite convergence while utilizing auxiliary frames enhances small object detection capabilities. Comprehensive assessments validate that the PDSI-RTDETR model achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the baseline RT-DETR and other prevalent methods regarding precision and speed, it unveils its considerable potential for detecting tomato ripeness. When applied to intelligent harvesting robots in the future, this approach can improve the quality of tomato harvesting by reducing the collection of immature and spoiled fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyan完成签到 ,获得积分10
刚刚
刚刚
1秒前
SciGPT应助Chem34采纳,获得10
2秒前
李浅墨发布了新的文献求助10
4秒前
4秒前
科研通AI5应助红糖小糍粑采纳,获得10
5秒前
5秒前
哈哈哈完成签到,获得积分10
6秒前
8秒前
空心菜完成签到,获得积分10
9秒前
李浅墨完成签到,获得积分10
9秒前
科研通AI2S应助红糖小糍粑采纳,获得10
10秒前
yamap030完成签到,获得积分10
11秒前
小妞妞完成签到,获得积分10
11秒前
Hello应助谨慎长颈鹿采纳,获得10
11秒前
852应助happyyang采纳,获得10
11秒前
今后应助英俊的念寒采纳,获得30
12秒前
正直的如凡完成签到,获得积分10
12秒前
14秒前
所所应助jitianxing采纳,获得10
16秒前
CodeCraft应助美满胜采纳,获得10
17秒前
bairunhua完成签到,获得积分10
19秒前
Lucas应助zkeeee采纳,获得10
21秒前
科研通AI5应助橙子慢慢来采纳,获得10
23秒前
23秒前
26秒前
26秒前
27秒前
77发布了新的文献求助10
29秒前
FAN完成签到,获得积分10
29秒前
美满胜完成签到,获得积分20
30秒前
jitianxing发布了新的文献求助10
31秒前
31秒前
要发一区sci的佳洁完成签到,获得积分10
32秒前
32秒前
科研通AI5应助初余采纳,获得10
33秒前
35秒前
35秒前
35秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715335
求助须知:如何正确求助?哪些是违规求助? 3262278
关于积分的说明 9923675
捐赠科研通 2976049
什么是DOI,文献DOI怎么找? 1632064
邀请新用户注册赠送积分活动 774315
科研通“疑难数据库(出版商)”最低求助积分说明 744856