Lightweight tomato ripeness detection algorithm based on the improved RT-DETR

成熟度 计算机科学 块(置换群论) 特征(语言学) 算法 人工智能 数学 几何学 食品科学 语言学 哲学 成熟 化学
作者
Sen Wang,Huiping Jiang,Jixiang Yang,Xuan Ma,Jiamin Chen,Zhongjie Li,Xingqun Tang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:5
标识
DOI:10.3389/fpls.2024.1415297
摘要

Tomatoes, widely cherished for their high nutritional value, necessitate precise ripeness identification and selective harvesting of mature fruits to significantly enhance the efficiency and economic benefits of tomato harvesting management. Previous studies on intelligent harvesting often focused solely on identifying tomatoes as the target, lacking fine-grained detection of tomato ripeness. This deficiency leads to the inadvertent harvesting of immature and rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven illumination, occlusion by leaves, and fruit overlap hinder the precise assessment of tomato ripeness by robotic systems. Simultaneously, the demand for high accuracy and rapid response in tomato ripeness detection is compounded by the need for making the model lightweight to mitigate hardware costs. This study proposes a lightweight model named PDSI-RTDETR to address these challenges. Initially, the PConv_Block module, integrating partial convolution with residual blocks, replaces the Basic_Block structure in the legacy backbone to alleviate computing load and enhance feature extraction efficiency. Subsequently, a deformable attention module is amalgamated with intra-scale feature interaction structure, bolstering the capability to extract detailed features for fine-grained classification. Additionally, the proposed slimneck-SSFF feature fusion structure, merging the Scale Sequence Feature Fusion framework with a slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce volume of computation and inference latency. Lastly, by amalgamating Inner-IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite convergence while utilizing auxiliary frames enhances small object detection capabilities. Comprehensive assessments validate that the PDSI-RTDETR model achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the baseline RT-DETR and other prevalent methods regarding precision and speed, it unveils its considerable potential for detecting tomato ripeness. When applied to intelligent harvesting robots in the future, this approach can improve the quality of tomato harvesting by reducing the collection of immature and spoiled fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lalalalalala完成签到,获得积分10
1秒前
threewei发布了新的文献求助10
1秒前
朻安完成签到,获得积分10
2秒前
4秒前
5秒前
6秒前
jeff完成签到,获得积分10
7秒前
59关闭了59文献求助
7秒前
可耐的嫣娆完成签到,获得积分10
11秒前
无花果应助hzz采纳,获得10
11秒前
音悦台发布了新的文献求助30
12秒前
15秒前
threewei完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
清欢完成签到 ,获得积分10
17秒前
18秒前
xixun关注了科研通微信公众号
18秒前
19秒前
19秒前
解语花发布了新的文献求助50
20秒前
啊啊啊完成签到,获得积分10
21秒前
小琛完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
25秒前
25秒前
36038138完成签到 ,获得积分10
27秒前
XRenaissance发布了新的文献求助10
28秒前
搬砖发布了新的文献求助10
29秒前
29秒前
酱紫完成签到 ,获得积分10
29秒前
淡定妙海发布了新的文献求助10
29秒前
NexusExplorer应助盖世汤圆采纳,获得20
30秒前
30秒前
Azyyyy完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助30
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408