Lightweight tomato ripeness detection algorithm based on the improved RT-DETR

成熟度 计算机科学 块(置换群论) 特征(语言学) 算法 人工智能 数学 几何学 食品科学 语言学 哲学 成熟 化学
作者
Sen Wang,Huiping Jiang,Jixiang Yang,Xuan Ma,Jiamin Chen,Zhongjie Li,Xingqun Tang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:5
标识
DOI:10.3389/fpls.2024.1415297
摘要

Tomatoes, widely cherished for their high nutritional value, necessitate precise ripeness identification and selective harvesting of mature fruits to significantly enhance the efficiency and economic benefits of tomato harvesting management. Previous studies on intelligent harvesting often focused solely on identifying tomatoes as the target, lacking fine-grained detection of tomato ripeness. This deficiency leads to the inadvertent harvesting of immature and rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven illumination, occlusion by leaves, and fruit overlap hinder the precise assessment of tomato ripeness by robotic systems. Simultaneously, the demand for high accuracy and rapid response in tomato ripeness detection is compounded by the need for making the model lightweight to mitigate hardware costs. This study proposes a lightweight model named PDSI-RTDETR to address these challenges. Initially, the PConv_Block module, integrating partial convolution with residual blocks, replaces the Basic_Block structure in the legacy backbone to alleviate computing load and enhance feature extraction efficiency. Subsequently, a deformable attention module is amalgamated with intra-scale feature interaction structure, bolstering the capability to extract detailed features for fine-grained classification. Additionally, the proposed slimneck-SSFF feature fusion structure, merging the Scale Sequence Feature Fusion framework with a slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce volume of computation and inference latency. Lastly, by amalgamating Inner-IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite convergence while utilizing auxiliary frames enhances small object detection capabilities. Comprehensive assessments validate that the PDSI-RTDETR model achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the baseline RT-DETR and other prevalent methods regarding precision and speed, it unveils its considerable potential for detecting tomato ripeness. When applied to intelligent harvesting robots in the future, this approach can improve the quality of tomato harvesting by reducing the collection of immature and spoiled fruits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coolman冰人发布了新的文献求助10
刚刚
打打应助Keyl采纳,获得10
刚刚
1秒前
1秒前
婆婆丁完成签到,获得积分0
2秒前
苗条的涟妖完成签到,获得积分20
2秒前
2秒前
2秒前
CipherSage应助姜彩秀采纳,获得10
2秒前
深情白风完成签到,获得积分10
3秒前
3秒前
诗瑶发布了新的文献求助10
3秒前
孝顺的飞荷完成签到,获得积分10
3秒前
舍曲林完成签到,获得积分10
3秒前
ky完成签到,获得积分20
3秒前
3秒前
NexusExplorer应助rong采纳,获得10
4秒前
隐形曼青应助kkk采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
今后应助silin采纳,获得10
4秒前
李洁发布了新的文献求助10
4秒前
北海未暖完成签到,获得积分10
5秒前
kiki发布了新的文献求助10
5秒前
SophieLiu发布了新的文献求助30
5秒前
Akim应助迟来的内啡肽采纳,获得10
5秒前
新火应助SXM采纳,获得20
6秒前
vagrant完成签到,获得积分10
6秒前
SciGPT应助义气的夜安采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
不偷懒就无敌完成签到,获得积分10
7秒前
7秒前
02完成签到 ,获得积分10
7秒前
gooooood发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
雯雯发布了新的文献求助10
8秒前
8秒前
wuwuhu完成签到,获得积分10
8秒前
默欢发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744