Lightweight tomato ripeness detection algorithm based on the improved RT-DETR

成熟度 计算机科学 块(置换群论) 特征(语言学) 算法 人工智能 数学 几何学 食品科学 语言学 哲学 成熟 化学
作者
Sen Wang,Huiping Jiang,Jixiang Yang,Xuan Ma,Jiamin Chen,Zhongjie Li,Xingqun Tang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:5
标识
DOI:10.3389/fpls.2024.1415297
摘要

Tomatoes, widely cherished for their high nutritional value, necessitate precise ripeness identification and selective harvesting of mature fruits to significantly enhance the efficiency and economic benefits of tomato harvesting management. Previous studies on intelligent harvesting often focused solely on identifying tomatoes as the target, lacking fine-grained detection of tomato ripeness. This deficiency leads to the inadvertent harvesting of immature and rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven illumination, occlusion by leaves, and fruit overlap hinder the precise assessment of tomato ripeness by robotic systems. Simultaneously, the demand for high accuracy and rapid response in tomato ripeness detection is compounded by the need for making the model lightweight to mitigate hardware costs. This study proposes a lightweight model named PDSI-RTDETR to address these challenges. Initially, the PConv_Block module, integrating partial convolution with residual blocks, replaces the Basic_Block structure in the legacy backbone to alleviate computing load and enhance feature extraction efficiency. Subsequently, a deformable attention module is amalgamated with intra-scale feature interaction structure, bolstering the capability to extract detailed features for fine-grained classification. Additionally, the proposed slimneck-SSFF feature fusion structure, merging the Scale Sequence Feature Fusion framework with a slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce volume of computation and inference latency. Lastly, by amalgamating Inner-IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite convergence while utilizing auxiliary frames enhances small object detection capabilities. Comprehensive assessments validate that the PDSI-RTDETR model achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the baseline RT-DETR and other prevalent methods regarding precision and speed, it unveils its considerable potential for detecting tomato ripeness. When applied to intelligent harvesting robots in the future, this approach can improve the quality of tomato harvesting by reducing the collection of immature and spoiled fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Postgraduate-Z完成签到,获得积分10
1秒前
bmt关闭了bmt文献求助
2秒前
所所应助wang采纳,获得10
2秒前
2秒前
asdfghjkl发布了新的文献求助10
3秒前
3秒前
刻苦的晓蕾完成签到,获得积分10
3秒前
zhl完成签到,获得积分10
3秒前
愛迪完成签到,获得积分10
4秒前
gy关闭了gy文献求助
4秒前
脆脆Shark完成签到,获得积分10
6秒前
坚强白凝完成签到,获得积分10
9秒前
10秒前
zho发布了新的文献求助10
10秒前
chizhi完成签到,获得积分10
12秒前
13秒前
希望天下0贩的0应助花花采纳,获得10
13秒前
q792309106发布了新的文献求助10
14秒前
小马甲应助杜兰特采纳,获得10
16秒前
CipherSage应助zxcv采纳,获得10
16秒前
17秒前
天天快乐应助安生生采纳,获得10
18秒前
小马宝莉完成签到,获得积分10
21秒前
思源应助曹松柏采纳,获得10
21秒前
22秒前
田様应助a123采纳,获得10
23秒前
小新发布了新的文献求助20
24秒前
24秒前
核桃发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
阔达冰兰发布了新的文献求助10
28秒前
28秒前
29秒前
中和皇极应助曹沛岚采纳,获得10
30秒前
安生生发布了新的文献求助10
30秒前
花花发布了新的文献求助10
31秒前
杜兰特发布了新的文献求助10
32秒前
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702