Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llli发布了新的文献求助10
刚刚
ymz完成签到,获得积分10
刚刚
Conccuc发布了新的文献求助10
刚刚
迷路博完成签到,获得积分10
刚刚
Jasper应助33ovo采纳,获得10
刚刚
mmmmmyq完成签到,获得积分10
2秒前
咯咯咯咯发布了新的文献求助10
2秒前
shwang发布了新的文献求助10
2秒前
3秒前
qwhj完成签到,获得积分10
4秒前
Owen应助小波龙采纳,获得10
4秒前
5秒前
5秒前
6秒前
7秒前
你好发布了新的文献求助40
7秒前
9秒前
hbhbj应助刘慧鑫采纳,获得20
9秒前
aifeeling完成签到,获得积分10
9秒前
keeptg发布了新的文献求助10
10秒前
上官若男应助LiSiyi采纳,获得10
10秒前
10秒前
fyy完成签到,获得积分10
11秒前
11秒前
kiteWYL发布了新的文献求助10
12秒前
叁零发布了新的文献求助10
12秒前
在一完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
胖呆呆发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
我是老大应助MY9990采纳,获得10
16秒前
科研通AI6应助岛屿采纳,获得10
16秒前
777完成签到,获得积分10
16秒前
savica发布了新的文献求助10
17秒前
你一头牛牛牛牛完成签到,获得积分10
17秒前
浮游应助哈哈采纳,获得10
18秒前
华仔应助害羞的慕晴采纳,获得50
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085