Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小小应助丘奇采纳,获得10
1秒前
1秒前
1秒前
小蜗牛完成签到 ,获得积分10
2秒前
2秒前
大豪子完成签到,获得积分10
3秒前
wbgwudi给wbgwudi的求助进行了留言
3秒前
海棠依旧完成签到,获得积分10
3秒前
24完成签到,获得积分10
3秒前
4秒前
对苏完成签到,获得积分10
4秒前
小何完成签到,获得积分10
4秒前
个性的荆发布了新的文献求助10
4秒前
刻苦大叔发布了新的文献求助10
6秒前
orixero应助red采纳,获得10
6秒前
7秒前
olivia发布了新的文献求助10
7秒前
Akim应助JJ采纳,获得10
7秒前
9秒前
9秒前
充电宝应助pjson15376449841采纳,获得10
9秒前
东北信风发布了新的文献求助100
10秒前
SciGPT应助fenglin4620采纳,获得10
11秒前
banruo发布了新的文献求助100
11秒前
11秒前
轨迹应助茗牌棉花采纳,获得20
12秒前
爱库珀应助茗牌棉花采纳,获得10
12秒前
14秒前
asd完成签到,获得积分10
14秒前
Hello应助机智的芷天采纳,获得10
15秒前
15秒前
游唐完成签到 ,获得积分10
16秒前
不胜寒完成签到,获得积分10
16秒前
16秒前
慕青应助黄家康采纳,获得10
16秒前
coco完成签到,获得积分10
17秒前
哭泣的随阴完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901