Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hou完成签到,获得积分10
刚刚
dadabad完成签到 ,获得积分10
1秒前
叶女士完成签到,获得积分10
1秒前
张锐斌完成签到,获得积分10
1秒前
马铃薯完成签到,获得积分10
2秒前
Tsuki完成签到,获得积分10
2秒前
YXIAN完成签到,获得积分10
2秒前
栖琦完成签到,获得积分10
2秒前
何处芳歇完成签到,获得积分10
3秒前
zzj完成签到,获得积分10
3秒前
tuanheqi给tuanheqi的求助进行了留言
4秒前
和谐青文完成签到 ,获得积分10
6秒前
程新亮完成签到 ,获得积分10
8秒前
9秒前
9秒前
Csy完成签到,获得积分10
9秒前
10秒前
特大包包完成签到 ,获得积分10
10秒前
zdx1022完成签到,获得积分10
11秒前
thinking完成签到,获得积分10
11秒前
QYY完成签到,获得积分10
12秒前
12秒前
柳易槐完成签到,获得积分10
13秒前
唠叨的觅松完成签到,获得积分10
13秒前
正经大善人完成签到,获得积分10
13秒前
烯灯完成签到,获得积分10
14秒前
西柚柠檬完成签到 ,获得积分10
14秒前
Yi发布了新的文献求助10
14秒前
xx完成签到,获得积分10
15秒前
小点完成签到 ,获得积分10
17秒前
MrCoolWu完成签到,获得积分10
18秒前
曲小晴完成签到,获得积分10
18秒前
liz发布了新的文献求助10
18秒前
雨点完成签到,获得积分10
19秒前
欣慰完成签到,获得积分0
20秒前
wq完成签到,获得积分10
20秒前
雪山飞龙发布了新的文献求助10
20秒前
TiAmo完成签到 ,获得积分10
21秒前
biubiu0417完成签到,获得积分10
21秒前
keikei完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645234
求助须知:如何正确求助?哪些是违规求助? 4768151
关于积分的说明 15027004
捐赠科研通 4803757
什么是DOI,文献DOI怎么找? 2568448
邀请新用户注册赠送积分活动 1525778
关于科研通互助平台的介绍 1485451