清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangsan完成签到,获得积分10
53秒前
woxinyouyou完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
blueskyzhi完成签到,获得积分10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助phd采纳,获得10
1分钟前
phd发布了新的文献求助10
2分钟前
李爱国应助phd采纳,获得10
2分钟前
2分钟前
所所应助Developing_human采纳,获得10
3分钟前
丹布里完成签到,获得积分10
3分钟前
丹布里发布了新的文献求助10
3分钟前
yl完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
冷酷的溜溜梅完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
小糊涂仙儿完成签到 ,获得积分10
5分钟前
梅溪湖的提词器完成签到,获得积分10
5分钟前
笑傲完成签到,获得积分10
5分钟前
5分钟前
桃七发布了新的文献求助10
6分钟前
上官若男应助Developing_human采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
wy.he应助桃七采纳,获得10
6分钟前
sam42发布了新的文献求助10
7分钟前
科研通AI6应助Yatagarasu采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766528
关于积分的说明 15025981
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568190
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175