Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助stone采纳,获得10
刚刚
榛子酱发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
十五完成签到,获得积分10
3秒前
研友_8WzxMZ完成签到,获得积分20
3秒前
spc68应助科研通管家采纳,获得10
3秒前
lcc应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
吕凯迪应助科研通管家采纳,获得10
4秒前
Lucas应助云无意采纳,获得10
4秒前
Tam应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
tt完成签到 ,获得积分10
5秒前
桐桐应助maplesirup采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
liao应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
Cxxxx完成签到 ,获得积分10
6秒前
wcz214应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助榛子酱采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684435
求助须知:如何正确求助?哪些是违规求助? 5036377
关于积分的说明 15184096
捐赠科研通 4843719
什么是DOI,文献DOI怎么找? 2596836
邀请新用户注册赠送积分活动 1549483
关于科研通互助平台的介绍 1507999