Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ven完成签到,获得积分10
刚刚
XU2025完成签到 ,获得积分10
1秒前
张玥完成签到,获得积分10
4秒前
西瓜刀完成签到 ,获得积分10
4秒前
FD完成签到,获得积分10
5秒前
qyys完成签到 ,获得积分10
5秒前
科研老兵完成签到,获得积分10
6秒前
ppttyy完成签到 ,获得积分10
6秒前
开朗的乐蕊完成签到,获得积分10
8秒前
wjj119完成签到,获得积分10
8秒前
脑洞疼应助欣喜灵波采纳,获得10
8秒前
赖雅绿完成签到,获得积分10
15秒前
胡图图完成签到,获得积分0
16秒前
鲤鱼完成签到,获得积分10
18秒前
20秒前
21秒前
霍巧凡发布了新的文献求助10
21秒前
红糖小糍粑应助风清扬采纳,获得10
22秒前
Ammon完成签到,获得积分10
22秒前
毛毛完成签到,获得积分10
23秒前
24秒前
POTATO发布了新的文献求助10
24秒前
ho应助GUO采纳,获得10
25秒前
开心向真完成签到,获得积分10
25秒前
xg发布了新的文献求助10
26秒前
康米完成签到,获得积分10
26秒前
木子大少发布了新的文献求助10
27秒前
向上发布了新的文献求助10
29秒前
唯梦完成签到 ,获得积分10
30秒前
niuniu完成签到,获得积分10
30秒前
豆包完成签到,获得积分10
33秒前
小野狼完成签到,获得积分10
34秒前
AKYDXS完成签到,获得积分10
34秒前
沉心望星海完成签到,获得积分10
34秒前
小二郎应助向上采纳,获得10
34秒前
千俞完成签到 ,获得积分10
35秒前
山月完成签到,获得积分10
36秒前
小王完成签到 ,获得积分10
36秒前
小可爱完成签到 ,获得积分10
37秒前
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695