亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
12秒前
阿正嗖啪发布了新的文献求助10
18秒前
18秒前
23秒前
无闻发布了新的文献求助10
24秒前
cj完成签到 ,获得积分10
27秒前
风景园林发布了新的文献求助10
27秒前
27秒前
天天天晴完成签到 ,获得积分10
29秒前
阿正嗖啪发布了新的文献求助10
32秒前
37秒前
无闻完成签到,获得积分10
39秒前
852应助nobody12004采纳,获得30
45秒前
47秒前
48秒前
49秒前
清爽冬莲完成签到 ,获得积分0
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Criminology34应助科研通管家采纳,获得10
50秒前
Ava应助科研通管家采纳,获得10
50秒前
ceeray23应助科研通管家采纳,获得10
50秒前
50秒前
世良发布了新的文献求助10
54秒前
SZ发布了新的文献求助100
54秒前
Mufreh应助cccc采纳,获得10
57秒前
小马甲应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
Anlocia发布了新的文献求助10
1分钟前
pipashu应助cccc采纳,获得10
1分钟前
Owen应助务实的犀牛采纳,获得10
1分钟前
优美的小笨蛋应助gulmira采纳,获得10
1分钟前
SZ完成签到,获得积分10
1分钟前
cccc完成签到,获得积分10
1分钟前
赫连涵柏完成签到,获得积分0
1分钟前
Jiong发布了新的文献求助30
1分钟前
1分钟前
zhnn完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367