Sequence-specific targeting of intrinsically disordered protein regions

内在无序蛋白质 序列(生物学) 计算生物学 纳米技术 生物 生物物理学 材料科学 遗传学
作者
Kejia Wu,Hanlun Jiang,Derrick R. Hicks,Caixuan Liu,Edin Muratspahić,Theresa A. Ramelot,Yuexuan Liu,Kerrie E. McNally,Amit Gaur,Brian Coventry,Wei Chen,Asim K. Bera,Alex Kang,Stacey Gerben,Mila Lamb,Analisa Murray,Xinting Li,Madison Kennedy,Wei Yang,Gudrun Schober
标识
DOI:10.1101/2024.07.15.603480
摘要

A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬秋双发布了新的文献求助10
刚刚
1秒前
万能图书馆应助zhenya采纳,获得10
1秒前
大吱吱发布了新的文献求助10
1秒前
笑点低凡桃完成签到,获得积分10
1秒前
htmy完成签到,获得积分10
1秒前
明明完成签到 ,获得积分10
1秒前
1秒前
2秒前
123456发布了新的文献求助10
2秒前
2秒前
卢俊江完成签到,获得积分10
2秒前
一一完成签到,获得积分10
2秒前
3秒前
叶子发布了新的文献求助10
3秒前
百尺竿头完成签到,获得积分10
3秒前
子车定帮发布了新的文献求助10
3秒前
ED应助呆萌松鼠采纳,获得10
4秒前
Ivy发布了新的文献求助10
4秒前
梅溪湖西完成签到 ,获得积分10
4秒前
称心雁凡发布了新的文献求助10
4秒前
fufu关注了科研通微信公众号
5秒前
5秒前
6秒前
li发布了新的文献求助10
6秒前
6秒前
XIN发布了新的文献求助30
7秒前
尊敬秋双完成签到,获得积分10
8秒前
8秒前
Justtry发布了新的文献求助10
9秒前
大吱吱完成签到,获得积分10
9秒前
9秒前
Gong发布了新的文献求助10
9秒前
10秒前
欧阳振应助酷酷的盼海采纳,获得10
10秒前
ads发布了新的文献求助30
10秒前
阳光的道消完成签到,获得积分10
10秒前
汉堡包应助科研小蚂蚁采纳,获得10
10秒前
chenxiaolei发布了新的文献求助10
11秒前
田様应助LX采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326