CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer

医学 接收机工作特性 单变量 队列 生物标志物 肿瘤科 肺癌 无线电技术 单变量分析 内科学 人工智能 机器学习 放射科 多元分析 多元统计 计算机科学 生物化学 化学
作者
Ting Xu,Xiaowen Liu,Yaxi Chen,Shuxing Wang,Changsi Jiang,Jingshan Gong
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12880-024-01380-8
摘要

Programmed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to predict PD-L1 expression in non-small cell lung cancers(NSCLCs). 259 consecutive patients with pathological confirmed NSCLCs were retrospectively collected and divided into the training cohort and validation cohort according to the chronological order. The univariate and multivariate analyses were used to build the clinical model. Radiomics and deep learning features were extracted from preoperative non-contrast CT images. After feature selection, Radiomics score (Rad-score) and deep learning radiomics score (DLR-score) were calculated through a linear combination of the selected features and their coefficients. Predictive performance for PD-L1 expression was evaluated via the area under the curve (AUC) of receiver operating characteristic, the calibration curves, and the decision curve analysis. The clinical model based on Cytokeratin 19 fragment and lobulated shape obtained an AUC of 0.767(95% CI: 0.673–0.860) in the training cohort and 0.604 (95% CI:0.477–0.731) in the validation cohort. 11 radiomics features and 15 deep learning features were selected by LASSO regression. AUCs of the Rad-score were 0.849 (95%CI: 0.783–0.914) and 0.717 (95%CI: 0.607–0.826) in the training cohort and validation cohort, respectively. AUCs of DLR-score were 0.938 (95%CI: 0.899–0.977) and 0.818(95%CI:0.727–0.910) in the training cohort and validation cohort, respectively. AUCs of the DLR-score were significantly higher than those of the Rad-score and the clinical model. The CT-based deep learning radiomics signature could achieve clinically acceptable predictive performance for PD-L1 expression, which showed potential to be a surrogate imaging biomarker or a complement of immunohistochemistry assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助xx采纳,获得10
刚刚
STAR完成签到 ,获得积分10
刚刚
大模型应助生产队的LV采纳,获得10
1秒前
领导范儿应助奕奕采纳,获得10
1秒前
1秒前
夏天来了发布了新的文献求助10
1秒前
pilot完成签到,获得积分10
1秒前
潘帅完成签到,获得积分10
2秒前
2秒前
jm完成签到,获得积分10
4秒前
4秒前
4秒前
都是发布了新的文献求助10
5秒前
猪猪hero应助wp采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
yaoyao完成签到,获得积分20
9秒前
9秒前
夏天来了发布了新的文献求助10
9秒前
研友_VZG7GZ应助月光闪采纳,获得10
10秒前
周老二发布了新的文献求助30
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570542
求助须知:如何正确求助?哪些是违规求助? 3141299
关于积分的说明 9442455
捐赠科研通 2842608
什么是DOI,文献DOI怎么找? 1562356
邀请新用户注册赠送积分活动 731072
科研通“疑难数据库(出版商)”最低求助积分说明 718272