Brookite-TiO2-Supported Pt Bilayers for the Low-Temperature Water–Gas Shift Reaction

水煤气变换反应 布鲁克特 催化作用 材料科学 水煤气 化学工程 化学 合成气 光催化 锐钛矿 有机化学 工程类
作者
Wenning Zhao,Junjun Wang,Xixiong Zhang,Guanghui Zhang,Yong Li,Zheng Jiang,Mingrun Li,Yan Zhou,Yuemin Wang,Wenjie Shen
出处
期刊:ACS Catalysis 卷期号:14 (18): 13591-13601
标识
DOI:10.1021/acscatal.4c03224
摘要

Highly dispersed Pt species, typically subnanometric clusters and single-atoms, feature catalysis that differed significantly from that of the faceted nanoparticles. However, the catalytic chemistry of these size-specified Pt entities is still a subject of debate. Here, we report that metallic Pt clusters in a bilayer geometry, dispersed on TiO2, served as the active phase for the low-temperature water–gas shift reaction. The control of Pt dispersion was done by treating a Pt/TiO2 sample, where 3 nm Pt particles dispersed over rod-shaped brookite-TiO2, with oxidative and reductive gases at elevated temperatures (673–873 K). The oxidative treatment of the Pt/TiO2 precursor yielded subnanometric PtOx clusters (<1 nm) at 773 K and cationic Pt single-atoms at 873 K. Combined microscopic and spectroscopic characterizations revealed that the PtOx clusters had a monolayer geometry, in which the Pt atoms were loosely connected via the Pt–O–Pt bond and chemically anchored on the surface of TiO2 via the Pt–O–Ti bond. While the cationic Pt single-atoms not only located on the surface but also diffused into the subsurface/bulk of TiO2, presenting in diverse coordination environments. Catalytic evaluations found that the subnanometric PtOx clusters were more active for the low-temperature water–gas shift reaction than the cationic Pt single-atoms. More interestingly, the H2-reduction of the PtOx clusters at 773 K resulted in metallic Pt clusters that adopted predominately a bilayer geometry at an appropriate Pt0/(Pt0 + Pt2+) ratio. The surficial metallic Pt atoms tuned the electronic structure of the positively charged Pt atoms at the Pt–TiO2 interface and thus enhanced the catalytic activity dramatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
niko发布了新的文献求助10
1秒前
wmmm发布了新的文献求助10
1秒前
FashionBoy应助锅锅采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
Qianbaor应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
明天见应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得30
2秒前
共享精神应助八大山人采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Qianbaor应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Jason应助科研通管家采纳,获得20
3秒前
suibianba应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
wqy完成签到,获得积分10
3秒前
大个应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
脑洞疼应助swordlee采纳,获得30
4秒前
酷波er应助gzyyb采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英姑应助没有名字采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212