Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification

联想(心理学) 鉴定(生物学) 超图 关联规则学习 小RNA 疾病 计算机科学 计算生物学 人工智能 医学 遗传学 生物 数学 心理学 基因 内科学 组合数学 心理治疗师 植物
作者
Ning Qiao,Yaomiao Zhao,Jun Gao,Chen Chen,Minghao Yin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3485788
摘要

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鉴定为学计算学的完成签到,获得积分10
1秒前
shinysparrow应助Artin采纳,获得200
2秒前
WYX完成签到,获得积分20
2秒前
2秒前
2秒前
迷路沁完成签到 ,获得积分10
3秒前
4秒前
li完成签到,获得积分10
8秒前
冷艳的dd发布了新的文献求助10
8秒前
9秒前
7Bao发布了新的文献求助10
10秒前
11秒前
荷包蛋发布了新的文献求助10
11秒前
思源应助DW采纳,获得10
11秒前
司南完成签到,获得积分10
11秒前
12秒前
12秒前
wsl发布了新的文献求助10
13秒前
恩雁发布了新的文献求助50
13秒前
科目三应助优雅涔雨采纳,获得10
13秒前
13秒前
15秒前
科研发布了新的文献求助10
16秒前
乐观德地应助范慧晨采纳,获得10
17秒前
LEMONS发布了新的文献求助10
17秒前
刘佳婷发布了新的文献求助10
17秒前
www完成签到,获得积分10
18秒前
19秒前
子铭发布了新的文献求助10
19秒前
ghost完成签到,获得积分10
19秒前
123完成签到,获得积分10
20秒前
21秒前
Orange应助恩雁采纳,获得50
22秒前
22秒前
22秒前
田様应助荷包蛋采纳,获得10
22秒前
英姑应助LEMONS采纳,获得10
23秒前
Metbutterly完成签到,获得积分20
23秒前
23秒前
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112