Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification

联想(心理学) 鉴定(生物学) 超图 关联规则学习 小RNA 疾病 计算机科学 计算生物学 人工智能 医学 遗传学 生物 数学 心理学 基因 内科学 组合数学 心理治疗师 植物
作者
Ning Qiao,Yaomiao Zhao,Jun Gao,Chen Chen,Minghao Yin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3485788
摘要

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mylove应助morry5007采纳,获得10
刚刚
隐形曼青应助Aurora采纳,获得10
刚刚
从容问雁发布了新的文献求助10
刚刚
刚刚
woshiwuziq完成签到 ,获得积分10
刚刚
SciGPT应助健忘的自行车采纳,获得20
1秒前
QWE发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
我是老大应助白苹果采纳,获得10
3秒前
Jackxu发布了新的文献求助10
3秒前
3秒前
Linda发布了新的文献求助30
3秒前
liuttinn完成签到,获得积分10
3秒前
所所应助刘丰铭采纳,获得10
4秒前
4秒前
4秒前
4秒前
能干冰露发布了新的文献求助10
4秒前
脑洞疼应助王则华采纳,获得10
4秒前
Leon发布了新的文献求助20
6秒前
7秒前
7秒前
闫小天天完成签到,获得积分10
8秒前
ningmeng发布了新的文献求助10
8秒前
8秒前
科研通AI6应助白辉采纳,获得10
8秒前
承乐应助波风水门pxf采纳,获得10
8秒前
8秒前
何文完成签到,获得积分10
9秒前
9秒前
香蕉觅云应助Jackxu采纳,获得10
9秒前
共享精神应助Jinyang采纳,获得10
9秒前
我嘞个豆完成签到,获得积分10
9秒前
Te发布了新的文献求助10
10秒前
10秒前
酷波er应助Wulei采纳,获得10
10秒前
斯文败类应助msw采纳,获得10
10秒前
光亮又晴发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836