Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification

联想(心理学) 鉴定(生物学) 超图 关联规则学习 小RNA 疾病 计算机科学 计算生物学 人工智能 医学 遗传学 生物 数学 心理学 基因 内科学 组合数学 植物 心理治疗师
作者
Ning Qiao,Yaomiao Zhao,Jun Gao,Chen Chen,Minghao Yin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3485788
摘要

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaoww完成签到,获得积分10
刚刚
1秒前
WZ0904发布了新的文献求助10
1秒前
1秒前
lab完成签到 ,获得积分0
1秒前
小蘑菇应助今今采纳,获得10
2秒前
CodeCraft应助秋之月采纳,获得10
2秒前
I1waml完成签到 ,获得积分10
2秒前
2秒前
guygun完成签到,获得积分10
2秒前
zho发布了新的文献求助10
3秒前
独特亦旋发布了新的文献求助10
3秒前
4秒前
研友_LOqqmZ完成签到,获得积分10
5秒前
5秒前
英俊的铭应助文献查找采纳,获得10
5秒前
solobang发布了新的文献求助10
5秒前
Jasper应助老迟到的书雁采纳,获得10
8秒前
orixero应助小二采纳,获得10
8秒前
9秒前
9秒前
simple完成签到,获得积分10
9秒前
caoyy发布了新的文献求助10
9秒前
赵小可可可可完成签到,获得积分10
11秒前
小萌发布了新的文献求助10
12秒前
weiv发布了新的文献求助10
12秒前
海科科发布了新的文献求助10
13秒前
陌上花完成签到,获得积分10
13秒前
我是站长才怪应助微笑襄采纳,获得10
14秒前
caoyy完成签到,获得积分10
15秒前
JamesPei应助独特亦旋采纳,获得10
16秒前
17秒前
17秒前
科目三应助Jenny采纳,获得50
19秒前
gry发布了新的文献求助10
20秒前
Hh发布了新的文献求助10
22秒前
Jzhang应助daniel采纳,获得10
22秒前
22秒前
夏夏发布了新的文献求助10
22秒前
jiesenya完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824