Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification

联想(心理学) 鉴定(生物学) 超图 关联规则学习 小RNA 疾病 计算机科学 计算生物学 人工智能 医学 遗传学 生物 数学 心理学 基因 内科学 组合数学 心理治疗师 植物
作者
Ning Qiao,Yaomiao Zhao,Jun Gao,Chen Chen,Minghao Yin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3485788
摘要

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小王发布了新的文献求助10
1秒前
在水一方应助豆包糊了采纳,获得10
1秒前
赘婿应助h7nho采纳,获得30
2秒前
2秒前
3秒前
流苏关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
kuikichu完成签到,获得积分10
3秒前
今后应助liming_li采纳,获得10
4秒前
空谷新苗完成签到,获得积分10
4秒前
科研通AI2S应助认真的水香采纳,获得10
4秒前
NexusExplorer应助嫤姝采纳,获得10
4秒前
FashionBoy应助妄自采纳,获得10
4秒前
Damalis完成签到,获得积分10
4秒前
Allez应助gwfew采纳,获得10
5秒前
hhhhyyy发布了新的文献求助10
5秒前
5秒前
bloodice发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Labixix完成签到,获得积分10
5秒前
6秒前
6秒前
微光完成签到,获得积分10
6秒前
科研小孟完成签到,获得积分10
8秒前
科研通AI6.1应助111117采纳,获得10
8秒前
甜美平文发布了新的文献求助10
8秒前
幽默盼柳完成签到,获得积分10
8秒前
8秒前
冷酷代天发布了新的文献求助10
9秒前
9秒前
jt完成签到,获得积分10
9秒前
10秒前
儒雅烧鹅发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750645
求助须知:如何正确求助?哪些是违规求助? 5464898
关于积分的说明 15367334
捐赠科研通 4889553
什么是DOI,文献DOI怎么找? 2629305
邀请新用户注册赠送积分活动 1577613
关于科研通互助平台的介绍 1534037