基因敲除
下调和上调
癌症研究
Wnt信号通路
细胞生长
上皮-间质转换
癌变
转移
细胞生物学
生物
化学
信号转导
细胞凋亡
癌症
生物化学
遗传学
基因
作者
An Wang,Youbo Wang,Qinyun Ma,Xiaofeng Chen
摘要
Abstract The objective was to determine whether USP13 stabilizes WISP1 protein and contributes to tumorigenicity and metastasis in ESCC through the Wnt/CTNNB1 signaling pathway. ESCC cell lines (KYSE150 and TE10) were treated with the proteasome inhibitor MG‐132, followed by siRNA screening of deubiquitinases (DUBs) to identify regulators of WISP1. Mass spectrometry, immunoprecipitation, and in vitro functional assays were conducted to explore the interaction between USP13 and WISP1 and to assess the effects of USP13 downregulation on cell proliferation, migration, invasion, epithelial–mesenchymal transition (EMT), and apoptosis. Additionally, in vivo experiments using mouse models were performed to evaluate the impact of USP13 knockdown on tumor growth and metastasis. USP13 was identified as a key regulator of WISP1, stabilizing its protein levels through deubiquitination. Downregulation of USP13 resulted in reduced WISP1 protein stability, decreased cell proliferation, migration, and EMT, and increased apoptosis in vitro. In vivo, USP13 knockdown significantly inhibited tumor growth and lung metastasis. WISP1 overexpression in USP13‐knockdown cells partially rescued these phenotypes, confirming the functional role of the USP13/WISP1 axis. Furthermore, knockdown of USP13 or WISP1 impaired the activation of the Wnt/CTNNB1 signaling pathway and reduced immune checkpoint marker expression, indicating a mechanism by which USP13 promotes immune evasion in ESCC. USP13 stabilizes WISP1 through deubiquitination, enhancing ESCC progression by activating the Wnt/CTNNB1 pathway and promoting immune evasion, making USP13 a potential therapeutic target in ESCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI