An End-to-End Reinforcement Learning Based Approach for Micro-View Order-Dispatching in Ride-Hailing

强化学习 计算机科学 订单(交换) 端到端原则 人工智能 运筹学 工程类 业务 财务
作者
Xinlang Yue,Yiran Liu,Fangzhou Shi,Sihong Luo,Chen Zhong,M. Lu,Zhe Xu
标识
DOI:10.1145/3627673.3680013
摘要

Assigning orders to drivers under localized spatiotemporal context (micro-view order-dispatching) is a major task in Didi, as it influences ride-hailing service experience. Existing industrial solutions mainly follow a two-stage pattern that incorporate heuristic or learning-based algorithms with naive combinatorial methods, tackling the uncertainty of both sides' behaviors, including emerging timings, spatial relationships, and travel duration, etc. In this paper, we propose a one-stage end-to-end reinforcement learning based order-dispatching approach that solves behavior prediction and combinatorial optimization uniformly in a sequential decision-making manner. Specifically, we employ a two-layer Markov Decision Process framework to model this problem, and present Deep Double Scalable Network (D2SN), an encoder-decoder structure network to generate order-driver assignments directly and stop assignments accordingly. Besides, by leveraging contextual dynamics, our approach can adapt to the behavioral patterns for better performance. Extensive experiments on Didi's real-world benchmarks justify that the proposed approach significantly outperforms competitive baselines in optimizing matching efficiency and user experience tasks. In addition, we evaluate the deployment outline and discuss the gains and experiences obtained during the deployment tests from the view of large-scale engineering implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助勤奋的汉堡采纳,获得10
刚刚
失联者完成签到,获得积分10
3秒前
烟花应助新的心跳采纳,获得10
5秒前
完美世界应助gyd采纳,获得10
5秒前
sgs2024完成签到,获得积分10
6秒前
vsvsgo完成签到,获得积分20
8秒前
上官若男应助Clara采纳,获得10
8秒前
zm完成签到,获得积分10
9秒前
Jasper应助vsvsgo采纳,获得10
13秒前
Lucas应助元谷雪采纳,获得10
15秒前
无辜的猎豹完成签到 ,获得积分10
15秒前
16秒前
张张应助Ash采纳,获得10
17秒前
单薄松鼠完成签到 ,获得积分10
17秒前
竹精灵完成签到,获得积分10
20秒前
小林太郎应助x1981采纳,获得30
21秒前
Atlantic完成签到,获得积分10
21秒前
LXY完成签到 ,获得积分10
23秒前
24秒前
闪闪凡白完成签到,获得积分10
24秒前
26秒前
英俊的铭应助LULU采纳,获得10
28秒前
自由天抒发布了新的文献求助10
28秒前
8282868发布了新的文献求助10
29秒前
qinglingdao完成签到,获得积分10
31秒前
tong完成签到,获得积分10
32秒前
淡然孤云完成签到,获得积分20
34秒前
34秒前
8282868完成签到,获得积分10
34秒前
35秒前
35秒前
xkkoala完成签到 ,获得积分10
38秒前
hhhblabla应助顶刊我来了采纳,获得20
39秒前
wangyue发布了新的文献求助10
39秒前
郝君颖发布了新的文献求助10
40秒前
领导范儿应助当归参子采纳,获得10
41秒前
41秒前
Hello应助大美女采纳,获得10
41秒前
阳光冰颜完成签到,获得积分10
42秒前
无奈的书琴完成签到 ,获得积分10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512282
求助须知:如何正确求助?哪些是违规求助? 3094765
关于积分的说明 9224470
捐赠科研通 2789567
什么是DOI,文献DOI怎么找? 1530758
邀请新用户注册赠送积分活动 711121
科研通“疑难数据库(出版商)”最低求助积分说明 706568