基因敲除
血小板源性生长因子受体
生物
血管平滑肌
癌症研究
肺动脉高压
细胞生物学
染色质免疫沉淀
长非编码RNA
下调和上调
生长因子
内科学
医学
内分泌学
基因表达
受体
细胞培养
平滑肌
遗传学
基因
发起人
生物化学
作者
C L Liu,Jidong Chen,Xingtao Huang,Qinyi Xia,Lei Yang,Guohui Jiao,Jinglin Tian,Jun Wang,Yanqin Niu,Li Li,Deming Gou
标识
DOI:10.1161/atvbaha.124.321416
摘要
BACKGROUND: Pulmonary hypertension is a devastating vascular disorder characterized by extensive pulmonary vascular remodeling, ultimately leading to right ventricular failure and death. Activation of PDGF (platelet-derived growth factor) signaling promotes the hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs), thus contributing to the pulmonary vascular remodeling. However, the molecular mechanisms that govern hyperproliferation of PASMCs induced by PDGF remain largely unknown, including the contribution of long noncoding RNAs (lncRNAs). In this study, we aimed to identify a novel lncRNA regulated by PDGF implicated in PASMC proliferation in pulmonary vascular remodeling. METHODS: RNA-sequencing analysis was conducted to identify a novel lncRNA named vessel-enriched lncRNA regulated by PDGF-BB (VELRP). Functional investigations of VELRP were performed using knockdown and overexpression strategies along with RNA sequencing. Validation of the function and potential mechanisms of VELRP were performed through Western blot, RNA immunoprecipitation, and chromatin immunoprecipitation assays. RESULTS: We identified a novel vessel-enriched lncRNA with an increased response to PDGF-BB stimulus. VELRP was identified as an evolutionarily conserved RNA molecules. Modulation of VELRP in PASMCs significantly altered cell proliferation. Mechanistically, VELRP enhances trimethylation of H3K4 by interacting with WDR5 (WD repeat-containing protein 5), leading to increased expression of CDK (cyclin-dependent kinase) 1, CDK2, and CDK4 and consequent hyperproliferation of PASMCs. The pathological relevance of VELRP upregulation in pulmonary artery was confirmed using rat pulmonary hypertension models in vivo, as well as in PASMCs from patients with idiopathic pulmonary arterial hypertension patients. Specific knockdown of VELRP in smooth muscle cells using adeno-associated virus type 9 SM22α (smooth muscle protein 22α) promoter–shRNA-mediated silencing of VELRP resulted in a significant decrease in right ventricular systolic pressure and vascular remodeling in rat pulmonary hypertension model. CONCLUSIONS: VELRP, as an lncRNA upregulated by PDGF-BB, mediates PASMC proliferation via WDR5/CDK signaling. In vivo studies demonstrate that targeted intervention of VELRP in smooth muscle cells can prevent the development of pulmonary hypertension.
科研通智能强力驱动
Strongly Powered by AbleSci AI