亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data

多发性硬化 医学 人工神经网络 代谢组学 人工智能 机器学习 生物信息学 免疫学 计算机科学 生物
作者
Nasar Ata,Insha Zahoor,Nasrul Hoda,Syed Muhammad Adnan,Senthilkumar Vijayakumar,Filious Louis,Laila Poisson,Ramandeep Rattan,Nitesh Kumar,Mirela Cerghet,Shailendra Giri
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:92: 105942-105942
标识
DOI:10.1016/j.msard.2024.105942
摘要

Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助伯赏元彤采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
Jimmy完成签到,获得积分10
9秒前
Billy举报千里求助涉嫌违规
10秒前
量子星尘发布了新的文献求助10
53秒前
sunshinelwt完成签到,获得积分10
1分钟前
binyao2024完成签到,获得积分10
1分钟前
1分钟前
胡可完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
2分钟前
健康的大船完成签到 ,获得积分10
2分钟前
哈基米发布了新的文献求助10
2分钟前
2分钟前
哈基米完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
小西完成签到 ,获得积分10
3分钟前
3分钟前
完美世界应助PAIDAXXXX采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
4分钟前
醉熏的飞薇完成签到,获得积分10
4分钟前
4分钟前
雾见春完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
zsmj23完成签到 ,获得积分10
5分钟前
uss完成签到,获得积分10
5分钟前
PAIDAXXXX发布了新的文献求助10
5分钟前
5分钟前
5分钟前
彭于晏应助小秋采纳,获得30
5分钟前
6分钟前
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204786
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629