Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data

多发性硬化 医学 人工神经网络 代谢组学 人工智能 机器学习 生物信息学 免疫学 计算机科学 生物
作者
Nasar Ata,Insha Zahoor,Nasrul Hoda,Syed Muhammad Adnan,Senthilkumar Vijayakumar,Filious Louis,Laila Poisson,Ramandeep Rattan,Nitesh Kumar,Mirela Cerghet,Shailendra Giri
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:92: 105942-105942
标识
DOI:10.1016/j.msard.2024.105942
摘要

Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
刚刚
SS2D发布了新的文献求助10
刚刚
1秒前
哇塞的完成签到,获得积分10
1秒前
天天快乐应助哈哈哈哈哈采纳,获得10
1秒前
3秒前
4秒前
晾猫人发布了新的文献求助10
4秒前
April Mei完成签到 ,获得积分10
4秒前
稳重傲柔应助牛牛眉目采纳,获得10
5秒前
学习完成签到 ,获得积分10
5秒前
5秒前
jucy完成签到,获得积分10
5秒前
小曦发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
若雨沫完成签到,获得积分10
7秒前
思凡发布了新的文献求助10
8秒前
喝一口奶茶完成签到 ,获得积分10
8秒前
all4sci发布了新的文献求助10
8秒前
8秒前
辛巴先生完成签到,获得积分10
9秒前
董竹君完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
九城发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
杨Eason发布了新的文献求助10
12秒前
Ava应助WANGSONGLU采纳,获得10
13秒前
aeyounrz完成签到,获得积分10
15秒前
15秒前
天际繁星发布了新的文献求助10
15秒前
白斯特发布了新的文献求助10
16秒前
yiyi131完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836