Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data

多发性硬化 医学 人工神经网络 代谢组学 人工智能 机器学习 生物信息学 免疫学 计算机科学 生物
作者
Nasar Ata,Insha Zahoor,Nasrul Hoda,Syed Muhammad Adnan,Senthilkumar Vijayakumar,Filious Louis,Laila Poisson,Ramandeep Rattan,Nitesh Kumar,Mirela Cerghet,Shailendra Giri
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:92: 105942-105942
标识
DOI:10.1016/j.msard.2024.105942
摘要

Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的楷瑞应助王手采纳,获得10
刚刚
糖发人发布了新的文献求助10
刚刚
090完成签到,获得积分10
刚刚
chen发布了新的文献求助10
刚刚
Clyde完成签到,获得积分10
2秒前
2秒前
和谐续完成签到 ,获得积分10
3秒前
大个应助李皓婷采纳,获得10
3秒前
5秒前
chen完成签到,获得积分10
5秒前
Hello应助ylw采纳,获得10
5秒前
6秒前
ChemistryZyh发布了新的文献求助10
6秒前
wensir发布了新的文献求助10
6秒前
端庄千琴完成签到,获得积分10
6秒前
heavennew完成签到,获得积分10
7秒前
8秒前
眼睛大樱桃完成签到,获得积分10
8秒前
Yuantian发布了新的文献求助10
9秒前
学吗你完成签到 ,获得积分10
9秒前
御青白少发布了新的文献求助10
10秒前
无尽夏完成签到,获得积分10
10秒前
Rylee发布了新的文献求助10
12秒前
12秒前
无私的念文完成签到 ,获得积分10
13秒前
充电宝应助Yuantian采纳,获得10
14秒前
水水完成签到,获得积分10
15秒前
sskr发布了新的文献求助10
15秒前
15327432191完成签到 ,获得积分10
16秒前
酷波er应助果汁采纳,获得10
16秒前
善学以致用应助程公子采纳,获得10
16秒前
海阔天空发布了新的文献求助10
16秒前
ChemistryZyh完成签到,获得积分10
17秒前
wensir完成签到,获得积分10
19秒前
斯文败类应助Rylee采纳,获得10
20秒前
养不熟的野猫完成签到,获得积分10
20秒前
sskr完成签到,获得积分10
20秒前
高文强完成签到,获得积分10
21秒前
22秒前
我是老大应助liu采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048