Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data

多发性硬化 医学 人工神经网络 代谢组学 人工智能 机器学习 生物信息学 免疫学 计算机科学 生物
作者
Nasar Ata,Insha Zahoor,Nasrul Hoda,Syed Muhammad Adnan,Senthilkumar Vijayakumar,Filious Louis,Laila Poisson,Ramandeep Rattan,Nitesh Kumar,Mirela Cerghet,Shailendra Giri
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:92: 105942-105942
标识
DOI:10.1016/j.msard.2024.105942
摘要

Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljj001ljj发布了新的文献求助10
刚刚
1秒前
4645发布了新的文献求助20
1秒前
1秒前
pcr163应助misong采纳,获得30
2秒前
科研通AI2S应助misong采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
王博士完成签到,获得积分20
4秒前
tsuki完成签到 ,获得积分10
4秒前
酷炫小懒虫应助荡南桥采纳,获得10
4秒前
linguobin发布了新的文献求助10
5秒前
5秒前
5秒前
北洛发布了新的文献求助10
6秒前
6秒前
124578发布了新的文献求助10
7秒前
大个应助奋斗的菲鹰采纳,获得10
8秒前
9秒前
9秒前
体贴不悔发布了新的文献求助10
9秒前
SYLH应助hauru采纳,获得10
10秒前
11秒前
Lsx完成签到,获得积分10
12秒前
12秒前
13秒前
绿色心情完成签到,获得积分10
14秒前
CodeCraft应助lee采纳,获得10
14秒前
15秒前
16秒前
NexusExplorer应助秋来九月八采纳,获得10
16秒前
M1982发布了新的文献求助10
16秒前
CC完成签到,获得积分10
17秒前
snowpie完成签到 ,获得积分10
17秒前
完美世界应助整齐行云采纳,获得10
17秒前
绿色心情发布了新的文献求助10
18秒前
18秒前
18秒前
充电宝应助OKOK采纳,获得10
18秒前
CipherSage应助大卫戴采纳,获得10
18秒前
充电宝应助124578采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232