Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer

无线电技术 医学 阶段(地层学) 肺癌 模式治疗法 实体瘤 癌症 肿瘤科 放射科 病理 内科学 古生物学 生物
作者
Qionglian Kuang,Bao Feng,Kuncai Xu,Yehang Chen,Xiaojuan Chen,Xiaobei Duan,Xiaoyan Lei,Xiangmeng Chen,Kunwei Li,Wansheng Long
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00783-8
摘要

Abstract Purpose To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC). Materials and Methods A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria. A univariate analysis was conducted on the clinicopathological characteristics and subjective CT findings of the progression and non-progression groups. The clinicopathological characteristics and subjective CT findings that exhibited significant differences were used as input variables for the extreme learning machine (ELM) classifier to construct the clinical model. We used the transfer learning strategy to train the ResNet18 model, used the model to extract deep learning features from all CT images, and then used the ELM classifier to classify the deep learning features to obtain the deep learning signature (DLS). A MDLR model incorporating clinicopathological characteristics, subjective CT findings and DLS was constructed. The diagnostic efficiencies of the clinical model, DLS model and MDLR model were evaluated by the area under the curve (AUC). Results Univariate analysis indicated that size ( p = 0.004), neuron-specific enolase (NSE) ( p = 0.03), carbohydrate antigen 19 − 9 (CA199) ( p = 0.003), and pathological stage ( p = 0.027) were significantly associated with the progression of solid stage I NSCLC after surgery. Therefore, these clinical characteristics were incorporated into the clinical model to predict the risk of progression in postoperative solid-stage NSCLC patients. A total of 294 deep learning features with nonzero coefficients were selected. The DLS in the progressive group was (0.721 ± 0.371), which was higher than that in the nonprogressive group (0.113 ± 0.350) ( p < 0.001). The combination of size、NSE、CA199、pathological stage and DLS demonstrated the superior performance in differentiating postoperative progression status. The AUC of the MDLR model was 0.885 (95% confidence interval [CI]: 0.842–0.927), higher than that of the clinical model (0.675 (95% CI: 0.599–0.752)) and DLS model (0.882 (95% CI: 0.835–0.929)). The DeLong test and decision in curve analysis revealed that the MDLR model was the most predictive and clinically useful model. Conclusion MDLR model is effective in predicting the risk of postoperative progression of solid stage I NSCLC, and it is helpful for the treatment and follow-up of solid stage I NSCLC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助洋葱采纳,获得10
1秒前
好好的er完成签到,获得积分10
1秒前
1秒前
Japan完成签到,获得积分10
2秒前
啦啦啦啦德玛西亚完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
小马甲应助hhh采纳,获得10
4秒前
共享精神应助ghx采纳,获得10
5秒前
5秒前
Sunn完成签到 ,获得积分10
6秒前
淇淇发布了新的文献求助20
7秒前
8秒前
lyy完成签到,获得积分10
8秒前
Twonej应助小灰灰采纳,获得30
8秒前
yy发布了新的文献求助30
9秒前
Akim应助王珂珂采纳,获得10
10秒前
陈隆发布了新的文献求助10
10秒前
小易发布了新的文献求助10
10秒前
李健应助大木头采纳,获得10
10秒前
空白格完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
二掌柜发布了新的文献求助30
11秒前
12秒前
笨笨的哈密瓜完成签到,获得积分10
13秒前
CipherSage应助五月采纳,获得10
14秒前
李同学完成签到,获得积分10
15秒前
bzlish发布了新的文献求助10
15秒前
彭于晏应助陈隆采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
香蕉诗蕊应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
老麦发布了新的文献求助10
16秒前
所所应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812