Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer

无线电技术 医学 阶段(地层学) 肺癌 模式治疗法 实体瘤 癌症 肿瘤科 放射科 病理 内科学 古生物学 生物
作者
Qionglian Kuang,Bao Feng,Kuncai Xu,Yehang Chen,Xiaojuan Chen,Xiaobei Duan,Xiaoyan Lei,Xiangmeng Chen,Kunwei Li,Wansheng Long
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00783-8
摘要

Abstract Purpose To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC). Materials and Methods A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria. A univariate analysis was conducted on the clinicopathological characteristics and subjective CT findings of the progression and non-progression groups. The clinicopathological characteristics and subjective CT findings that exhibited significant differences were used as input variables for the extreme learning machine (ELM) classifier to construct the clinical model. We used the transfer learning strategy to train the ResNet18 model, used the model to extract deep learning features from all CT images, and then used the ELM classifier to classify the deep learning features to obtain the deep learning signature (DLS). A MDLR model incorporating clinicopathological characteristics, subjective CT findings and DLS was constructed. The diagnostic efficiencies of the clinical model, DLS model and MDLR model were evaluated by the area under the curve (AUC). Results Univariate analysis indicated that size ( p = 0.004), neuron-specific enolase (NSE) ( p = 0.03), carbohydrate antigen 19 − 9 (CA199) ( p = 0.003), and pathological stage ( p = 0.027) were significantly associated with the progression of solid stage I NSCLC after surgery. Therefore, these clinical characteristics were incorporated into the clinical model to predict the risk of progression in postoperative solid-stage NSCLC patients. A total of 294 deep learning features with nonzero coefficients were selected. The DLS in the progressive group was (0.721 ± 0.371), which was higher than that in the nonprogressive group (0.113 ± 0.350) ( p < 0.001). The combination of size、NSE、CA199、pathological stage and DLS demonstrated the superior performance in differentiating postoperative progression status. The AUC of the MDLR model was 0.885 (95% confidence interval [CI]: 0.842–0.927), higher than that of the clinical model (0.675 (95% CI: 0.599–0.752)) and DLS model (0.882 (95% CI: 0.835–0.929)). The DeLong test and decision in curve analysis revealed that the MDLR model was the most predictive and clinically useful model. Conclusion MDLR model is effective in predicting the risk of postoperative progression of solid stage I NSCLC, and it is helpful for the treatment and follow-up of solid stage I NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助浅斟低唱采纳,获得10
1秒前
2秒前
yurunxintian完成签到,获得积分10
3秒前
4秒前
小子发布了新的文献求助30
4秒前
跳跃的冷卉完成签到 ,获得积分10
4秒前
引子给认真的弼的求助进行了留言
7秒前
科研小民工应助betty2009采纳,获得30
7秒前
p13508397190发布了新的文献求助10
8秒前
YP_024完成签到,获得积分10
8秒前
10秒前
结实擎苍发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
甜甜太阳发布了新的文献求助10
14秒前
chuhaomin发布了新的文献求助30
14秒前
陌上花开发布了新的文献求助10
16秒前
老姚完成签到,获得积分10
17秒前
17秒前
无限秋天发布了新的文献求助10
18秒前
luo完成签到,获得积分10
20秒前
20秒前
bala完成签到 ,获得积分10
20秒前
明朗完成签到 ,获得积分10
21秒前
幽默亦旋完成签到 ,获得积分10
21秒前
1+1应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
爱静静应助jiang采纳,获得10
22秒前
zhangyidian应助科研通管家采纳,获得10
22秒前
lijianguo应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
大模型应助结实擎苍采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
zhangyidian应助科研通管家采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093