已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer

无线电技术 医学 阶段(地层学) 肺癌 模式治疗法 实体瘤 癌症 肿瘤科 放射科 病理 内科学 古生物学 生物
作者
Qionglian Kuang,Bao Feng,Kuncai Xu,Yehang Chen,Xiaojuan Chen,Xiaobei Duan,Xiaoyan Lei,Xiangmeng Chen,Kunwei Li,Wansheng Long
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00783-8
摘要

Abstract Purpose To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC). Materials and Methods A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria. A univariate analysis was conducted on the clinicopathological characteristics and subjective CT findings of the progression and non-progression groups. The clinicopathological characteristics and subjective CT findings that exhibited significant differences were used as input variables for the extreme learning machine (ELM) classifier to construct the clinical model. We used the transfer learning strategy to train the ResNet18 model, used the model to extract deep learning features from all CT images, and then used the ELM classifier to classify the deep learning features to obtain the deep learning signature (DLS). A MDLR model incorporating clinicopathological characteristics, subjective CT findings and DLS was constructed. The diagnostic efficiencies of the clinical model, DLS model and MDLR model were evaluated by the area under the curve (AUC). Results Univariate analysis indicated that size ( p = 0.004), neuron-specific enolase (NSE) ( p = 0.03), carbohydrate antigen 19 − 9 (CA199) ( p = 0.003), and pathological stage ( p = 0.027) were significantly associated with the progression of solid stage I NSCLC after surgery. Therefore, these clinical characteristics were incorporated into the clinical model to predict the risk of progression in postoperative solid-stage NSCLC patients. A total of 294 deep learning features with nonzero coefficients were selected. The DLS in the progressive group was (0.721 ± 0.371), which was higher than that in the nonprogressive group (0.113 ± 0.350) ( p < 0.001). The combination of size、NSE、CA199、pathological stage and DLS demonstrated the superior performance in differentiating postoperative progression status. The AUC of the MDLR model was 0.885 (95% confidence interval [CI]: 0.842–0.927), higher than that of the clinical model (0.675 (95% CI: 0.599–0.752)) and DLS model (0.882 (95% CI: 0.835–0.929)). The DeLong test and decision in curve analysis revealed that the MDLR model was the most predictive and clinically useful model. Conclusion MDLR model is effective in predicting the risk of postoperative progression of solid stage I NSCLC, and it is helpful for the treatment and follow-up of solid stage I NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助晓湫采纳,获得10
3秒前
8秒前
9秒前
9秒前
qzs完成签到,获得积分10
10秒前
陈隆发布了新的文献求助10
13秒前
qzs发布了新的文献求助10
13秒前
NexusExplorer应助晓湫采纳,获得10
13秒前
彭于晏应助LLX采纳,获得10
14秒前
14秒前
15秒前
桐桐应助英吉利25采纳,获得10
20秒前
21秒前
ghostpants完成签到,获得积分10
22秒前
23秒前
23秒前
闫伯涵发布了新的文献求助10
26秒前
拿铁发布了新的文献求助10
26秒前
Sensons发布了新的文献求助10
27秒前
yuC发布了新的文献求助10
28秒前
xiaolei完成签到 ,获得积分10
29秒前
31秒前
你好完成签到,获得积分10
31秒前
iNk应助科研通管家采纳,获得20
34秒前
Akim应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
iNk应助科研通管家采纳,获得20
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
35秒前
35秒前
汉堡包应助科研通管家采纳,获得10
35秒前
35秒前
你好发布了新的文献求助10
36秒前
果粒橙完成签到 ,获得积分10
38秒前
39秒前
40秒前
zhxi发布了新的文献求助10
41秒前
fang完成签到 ,获得积分10
41秒前
李健的小迷弟应助晓湫采纳,获得10
41秒前
meng完成签到 ,获得积分10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963020
求助须知:如何正确求助?哪些是违规求助? 3508944
关于积分的说明 11144216
捐赠科研通 3241909
什么是DOI,文献DOI怎么找? 1791705
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803603