Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer

无线电技术 医学 阶段(地层学) 肺癌 模式治疗法 实体瘤 癌症 肿瘤科 放射科 病理 内科学 古生物学 生物
作者
Qionglian Kuang,Bao Feng,Kuncai Xu,Yehang Chen,Xiaojuan Chen,Xiaobei Duan,Xiaoyan Lei,Xiangmeng Chen,Kunwei Li,Wansheng Long
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00783-8
摘要

Abstract Purpose To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC). Materials and Methods A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria. A univariate analysis was conducted on the clinicopathological characteristics and subjective CT findings of the progression and non-progression groups. The clinicopathological characteristics and subjective CT findings that exhibited significant differences were used as input variables for the extreme learning machine (ELM) classifier to construct the clinical model. We used the transfer learning strategy to train the ResNet18 model, used the model to extract deep learning features from all CT images, and then used the ELM classifier to classify the deep learning features to obtain the deep learning signature (DLS). A MDLR model incorporating clinicopathological characteristics, subjective CT findings and DLS was constructed. The diagnostic efficiencies of the clinical model, DLS model and MDLR model were evaluated by the area under the curve (AUC). Results Univariate analysis indicated that size ( p = 0.004), neuron-specific enolase (NSE) ( p = 0.03), carbohydrate antigen 19 − 9 (CA199) ( p = 0.003), and pathological stage ( p = 0.027) were significantly associated with the progression of solid stage I NSCLC after surgery. Therefore, these clinical characteristics were incorporated into the clinical model to predict the risk of progression in postoperative solid-stage NSCLC patients. A total of 294 deep learning features with nonzero coefficients were selected. The DLS in the progressive group was (0.721 ± 0.371), which was higher than that in the nonprogressive group (0.113 ± 0.350) ( p < 0.001). The combination of size、NSE、CA199、pathological stage and DLS demonstrated the superior performance in differentiating postoperative progression status. The AUC of the MDLR model was 0.885 (95% confidence interval [CI]: 0.842–0.927), higher than that of the clinical model (0.675 (95% CI: 0.599–0.752)) and DLS model (0.882 (95% CI: 0.835–0.929)). The DeLong test and decision in curve analysis revealed that the MDLR model was the most predictive and clinically useful model. Conclusion MDLR model is effective in predicting the risk of postoperative progression of solid stage I NSCLC, and it is helpful for the treatment and follow-up of solid stage I NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leeOOO发布了新的文献求助10
刚刚
2秒前
竹筏过海应助大霖采纳,获得40
4秒前
7秒前
小jiojio的猪完成签到,获得积分10
8秒前
weishuhan发布了新的文献求助10
9秒前
晊恦完成签到,获得积分10
10秒前
HEHNJJ完成签到,获得积分10
10秒前
苏书白应助ak47采纳,获得10
12秒前
菲比发布了新的文献求助10
13秒前
叙温雨发布了新的文献求助10
14秒前
斯文的枕头完成签到,获得积分20
15秒前
16秒前
SciGPT应助zhangwansen采纳,获得10
17秒前
17秒前
斑马兽完成签到 ,获得积分10
18秒前
年轻半雪完成签到,获得积分10
18秒前
20秒前
21秒前
科研通AI2S应助契咯采纳,获得10
22秒前
吕广霞发布了新的文献求助10
24秒前
草叶叶发布了新的文献求助10
26秒前
27秒前
科研通AI2S应助贾趴菜采纳,获得10
29秒前
飘逸的乘风完成签到,获得积分10
29秒前
传奇3应助叙温雨采纳,获得10
31秒前
今后应助eeeee采纳,获得10
31秒前
wubuking完成签到 ,获得积分10
31秒前
zhangwansen发布了新的文献求助10
32秒前
菲比完成签到,获得积分20
32秒前
34秒前
言午完成签到,获得积分10
34秒前
Chen272完成签到,获得积分10
34秒前
35秒前
35秒前
快乐的凡霜完成签到,获得积分10
35秒前
tudios完成签到,获得积分10
35秒前
weishuhan完成签到,获得积分10
36秒前
万能图书馆应助leeOOO采纳,获得10
36秒前
whisper80完成签到,获得积分10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149387
求助须知:如何正确求助?哪些是违规求助? 2800406
关于积分的说明 7840028
捐赠科研通 2458019
什么是DOI,文献DOI怎么找? 1308162
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706