余辉
材料科学
手性(物理)
能量转移
兴奋剂
圆极化
调制(音乐)
光电子学
光学
分子物理学
物理
天体物理学
粒子物理学
手征对称破缺
伽马射线暴
声学
Nambu–Jona Lasinio模型
夸克
微带线
作者
Lingzhong Wei,Song Guo,Beibei Zhang,Bingli Jiang,Sheng Wang,Zuoan Liu,Yanqi Xu,Yongyang Gong,Yuanli Liu,Wang Zhang Yuan
标识
DOI:10.1002/adfm.202409681
摘要
Abstract Circularly polarized luminescence (CPL) materials offer exciting potential due to their unique light properties. However, controlling the color of afterglow emission, a key feature for many applications remains a challenge. Here, a co‐doping strategy is presented for precise control of multicolor CPL afterglow in films. This approach utilizes chiral naphthylphosphoric acid derivatives as energy and chirality transfer donors, commonly used fluorescent dye rhodamine B (RB) and PVA are selected as the acceptor and the polymeric matrix, respectively. Remarkably, the co‐doped films exhibit ultra‐long green circular polarization phosphorescence lasting several seconds with high efficiency (14.23%), lifetime (1025.5 ms), and dissymmetry factor (8.44 × 10 −3 ). Crucially, by adjusting the acceptor content, it can precisely tune the phosphorescence‐to‐fluorescence ratio and achieve multicolor afterglow. This control stems from a combination of Förster resonance energy transfer, chirality transfer, and color‐mixing effects. Furthermore, this approach significantly improves the asymmetry factor of the CPL afterglow by an order of magnitude (5.17 × 10 −2 ). It is anticipated that this straightforward approach to precisely regulating the afterglow color of CPL will provide invaluable insights for the future design of highly efficient and innovative CPL materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI