The objective of this work was to prepare and characterize liposomes containing co-encapsulated ascorbic acid (AA) and ascorbyl palmitate (AP), as well as to evaluate their stability, cytotoxicity, antioxidant, and antimicrobial activity. Through the pre-formulation studies, it was possible to improve the formulation, as leaving it more stable and with a greater antioxidant activity, resulting in a formulation designated LIP-AAP, with 161 nm vesicle size, 0.215 polydispersity index, −31.7 mV zeta potential, and pH of 3.34. Encapsulation efficiencies were 37% for AA and 79% for AP, and the content was 1 mg/mL for each compound. The optimized liposomes demonstrated stability under refrigeration for 60 days, significant antioxidant activity (31.4 μMol of TE/mL), and non-toxicity, but no antimicrobial effects against bacteria and fungi were observed. These findings confirm that the co-encapsulated liposomes are potent, stable antioxidants that maintain their physical and chemical properties under optimal storage conditions. • Computer simulation confirmed favorable interactions for formulation development (LIP-AAP). • Enhancements of LIP-AAP: pre-formulation studies select phase, method, antioxidant, and active. • Liposomes co-encapsulating AA and AP show potent antioxidant activity. • LIP-AAP preserves cell viability, DNA, reduces radicals, showing non-toxicity. • Extended physicochemical stability of LIP-AAP under refrigeration ensures practical potential.