The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟酒不离生完成签到,获得积分10
刚刚
jin发布了新的文献求助10
1秒前
1秒前
zhao完成签到,获得积分10
2秒前
一颗好种子完成签到 ,获得积分10
2秒前
Weekhs发布了新的文献求助10
2秒前
2秒前
Jun完成签到,获得积分10
2秒前
所所应助liu采纳,获得10
2秒前
宁为树发布了新的文献求助10
2秒前
chosmos发布了新的文献求助10
3秒前
fengge发布了新的文献求助10
3秒前
4秒前
Ava应助wmm采纳,获得10
5秒前
浮游应助Ambition9采纳,获得10
5秒前
浮游应助wanhe采纳,获得10
5秒前
5秒前
精明天荷完成签到,获得积分10
6秒前
keyan发布了新的文献求助10
6秒前
snowman发布了新的文献求助20
6秒前
闫木木发布了新的文献求助10
7秒前
舒适大米发布了新的文献求助10
7秒前
丘比特应助JIJINGHUANXI采纳,获得10
8秒前
医痞子完成签到,获得积分10
8秒前
lixxx发布了新的文献求助10
9秒前
失眠无声完成签到,获得积分10
9秒前
额度关注了科研通微信公众号
9秒前
聪明半梦发布了新的文献求助10
9秒前
aurora发布了新的文献求助10
9秒前
香蕉觅云应助qq采纳,获得10
9秒前
fengge完成签到,获得积分10
10秒前
WYang完成签到,获得积分10
10秒前
所所应助jin采纳,获得10
11秒前
酷波er应助科研小风采纳,获得10
11秒前
11秒前
11秒前
科研通AI6应助北一采纳,获得10
13秒前
njxndnajoasndlas完成签到,获得积分20
13秒前
勤恳友灵完成签到,获得积分10
13秒前
聪明半梦完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558868
求助须知:如何正确求助?哪些是违规求助? 3985681
关于积分的说明 12339795
捐赠科研通 3656197
什么是DOI,文献DOI怎么找? 2014213
邀请新用户注册赠送积分活动 1049037
科研通“疑难数据库(出版商)”最低求助积分说明 937443