The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮蛋完成签到,获得积分10
2秒前
2秒前
鱼贝贝完成签到 ,获得积分10
4秒前
懒洋洋完成签到 ,获得积分10
6秒前
yaxuandeng完成签到,获得积分10
7秒前
7秒前
浮游应助wocao采纳,获得10
8秒前
Lee发布了新的文献求助10
10秒前
11秒前
deeperection发布了新的文献求助10
13秒前
15秒前
丘比特应助ahfjk采纳,获得10
16秒前
youxiu完成签到 ,获得积分10
16秒前
17秒前
dolabmu完成签到 ,获得积分10
18秒前
18秒前
19秒前
jiaxiangxia完成签到 ,获得积分10
20秒前
wang发布了新的文献求助10
20秒前
21秒前
HuSP完成签到,获得积分10
23秒前
菜菜博士发布了新的文献求助10
24秒前
xiaoqi完成签到,获得积分10
24秒前
一包辣条完成签到,获得积分10
24秒前
Rong完成签到 ,获得积分10
24秒前
研友_8Kedgn发布了新的文献求助10
26秒前
应飞飞完成签到,获得积分10
26秒前
甜甜圈完成签到 ,获得积分10
26秒前
厚德载物完成签到,获得积分10
26秒前
LLL完成签到,获得积分10
26秒前
27秒前
28秒前
菜菜博士完成签到,获得积分10
29秒前
浮游应助wocao采纳,获得10
30秒前
南风完成签到,获得积分10
31秒前
JAYZHANG发布了新的文献求助10
32秒前
32秒前
木子完成签到,获得积分10
32秒前
FashionBoy应助无情的友容采纳,获得10
32秒前
MesureWu给MesureWu的求助进行了留言
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429