The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ash完成签到,获得积分10
刚刚
马伟杰发布了新的文献求助10
刚刚
Jasper应助一直向前采纳,获得10
1秒前
思源应助狂野忆文采纳,获得10
1秒前
大模型应助狂野忆文采纳,获得10
1秒前
科目三应助狂野忆文采纳,获得10
1秒前
酷波er应助狂野忆文采纳,获得10
1秒前
CipherSage应助狂野忆文采纳,获得10
1秒前
传奇3应助狂野忆文采纳,获得10
1秒前
斯文败类应助狂野忆文采纳,获得10
1秒前
爆米花应助狂野忆文采纳,获得10
1秒前
英姑应助狂野忆文采纳,获得10
2秒前
Hello应助狂野忆文采纳,获得10
2秒前
八月完成签到,获得积分10
2秒前
Man_proposes完成签到,获得积分10
2秒前
小佳完成签到,获得积分10
2秒前
学渣一枚完成签到,获得积分10
2秒前
2秒前
月半完成签到,获得积分10
3秒前
fys131415完成签到 ,获得积分10
3秒前
闪闪火车完成签到 ,获得积分10
3秒前
4秒前
jidou1011完成签到,获得积分10
4秒前
扁舟灬完成签到,获得积分10
4秒前
QZZ完成签到,获得积分10
4秒前
agnway完成签到,获得积分10
4秒前
5秒前
战战兢兢完成签到 ,获得积分10
5秒前
xuejie发布了新的文献求助30
5秒前
专一的傲白完成签到 ,获得积分10
5秒前
星辰大海应助miezhugong采纳,获得30
6秒前
zh完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
CodeCraft应助he采纳,获得10
6秒前
wisdom完成签到,获得积分10
7秒前
科研通AI2S应助Distance采纳,获得20
7秒前
8秒前
8秒前
肖耶啵完成签到,获得积分10
8秒前
betyby发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259