The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hmzek完成签到,获得积分10
刚刚
11完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
btsforever完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
吴彦祖完成签到,获得积分10
2秒前
慕青应助刻苦的怀曼采纳,获得10
2秒前
Hello应助LDDD采纳,获得10
2秒前
明理含芙完成签到 ,获得积分10
2秒前
所所应助SYB采纳,获得10
3秒前
4秒前
4秒前
王圈发布了新的文献求助10
5秒前
jellorio发布了新的文献求助10
6秒前
云泥发布了新的文献求助10
6秒前
今夜不设防完成签到,获得积分10
6秒前
6秒前
太叔白风完成签到,获得积分10
6秒前
菌菇发布了新的文献求助30
7秒前
zz完成签到 ,获得积分10
8秒前
mumu完成签到,获得积分10
9秒前
舒适的迎梦完成签到,获得积分10
9秒前
从容寻云发布了新的文献求助10
9秒前
基2完成签到 ,获得积分10
10秒前
Lucas应助cruise采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
QIAN.完成签到,获得积分10
13秒前
llssmm给llssmm的求助进行了留言
13秒前
背后亦寒发布了新的文献求助30
16秒前
qwe完成签到,获得积分20
17秒前
kaikai完成签到,获得积分10
18秒前
18秒前
是真的不吃鱼完成签到,获得积分10
18秒前
帅气香芦发布了新的文献求助10
19秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445993
求助须知:如何正确求助?哪些是违规求助? 4555152
关于积分的说明 14249970
捐赠科研通 4477453
什么是DOI,文献DOI怎么找? 2453304
邀请新用户注册赠送积分活动 1444087
关于科研通互助平台的介绍 1420028