The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meng给Meng的求助进行了留言
1秒前
2秒前
alpaca关注了科研通微信公众号
3秒前
自信又菡完成签到,获得积分10
3秒前
4秒前
桐桐应助霂漪采纳,获得10
6秒前
7秒前
huangYinghua发布了新的文献求助10
8秒前
所所应助支初晴采纳,获得10
8秒前
共享精神应助美满忆文采纳,获得10
13秒前
better7发布了新的文献求助10
13秒前
18秒前
19秒前
叶黄戍完成签到,获得积分20
19秒前
alpaca发布了新的文献求助10
22秒前
23秒前
乐乐乐乐发布了新的文献求助10
24秒前
26秒前
你好麻烦哦完成签到,获得积分10
27秒前
DDda完成签到 ,获得积分10
28秒前
0816my完成签到,获得积分10
28秒前
王润发布了新的文献求助10
31秒前
32秒前
wanci应助王加冕采纳,获得10
34秒前
路路有为完成签到 ,获得积分10
34秒前
orixero应助幽默万天采纳,获得10
35秒前
DDda关注了科研通微信公众号
36秒前
支初晴发布了新的文献求助10
38秒前
38秒前
40秒前
wanci应助忧心的襄采纳,获得10
41秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
双黄应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
CodeCraft应助科研通管家采纳,获得10
41秒前
乐乐应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
42秒前
chenchen应助科研通管家采纳,获得10
42秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264294
求助须知:如何正确求助?哪些是违规求助? 2904394
关于积分的说明 8330149
捐赠科研通 2574616
什么是DOI,文献DOI怎么找? 1399275
科研通“疑难数据库(出版商)”最低求助积分说明 654476
邀请新用户注册赠送积分活动 633126