The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情谷兰完成签到,获得积分10
1秒前
上官若男应助崔风机采纳,获得10
2秒前
4秒前
Zx完成签到 ,获得积分10
4秒前
5秒前
miaojuly给miaojuly的求助进行了留言
6秒前
思源应助劈里啪啦滴毛毛采纳,获得10
7秒前
7秒前
上官若男应助yanjiusheng采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
吭吭菜菜发布了新的文献求助10
9秒前
研友_VZG7GZ应助xiaotian采纳,获得10
10秒前
10秒前
Bruial发布了新的文献求助10
10秒前
西又木完成签到,获得积分10
12秒前
13秒前
13秒前
蓝123456发布了新的文献求助10
13秒前
脑洞疼应助柚子采纳,获得10
13秒前
13秒前
高翔发布了新的文献求助10
14秒前
Hello应助Arnold采纳,获得10
16秒前
16秒前
英吉利25发布了新的文献求助10
17秒前
西又木发布了新的文献求助30
17秒前
17秒前
17秒前
18秒前
18秒前
SciGPT应助XX采纳,获得10
18秒前
面向阳光完成签到,获得积分10
18秒前
18秒前
杨同学完成签到,获得积分10
19秒前
20秒前
文静灵阳发布了新的文献求助10
22秒前
大力的惠关注了科研通微信公众号
22秒前
23秒前
大力的惠关注了科研通微信公众号
23秒前
Bruial完成签到,获得积分10
23秒前
HJJHJH发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953