The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
解语花发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Stella应助甜的瓜采纳,获得10
4秒前
6秒前
FashionBoy应助蔚蓝的天空采纳,获得10
6秒前
kk发布了新的文献求助10
6秒前
LFC发布了新的文献求助10
6秒前
7秒前
CodeCraft应助周苗采纳,获得10
7秒前
FashionBoy应助优秀的凡蕾采纳,获得10
8秒前
8秒前
JamesPei应助zpw123123采纳,获得10
9秒前
9秒前
9秒前
爱笑以松完成签到,获得积分10
9秒前
10秒前
mh发布了新的文献求助50
10秒前
科研通AI6应助正直的班采纳,获得10
11秒前
11秒前
vertl发布了新的文献求助10
12秒前
12秒前
13秒前
Seathern发布了新的文献求助10
13秒前
韩霖发布了新的文献求助10
14秒前
刘丰铭发布了新的文献求助10
14秒前
14秒前
gao杲gao完成签到,获得积分10
14秒前
14秒前
斯文败类应助happiness采纳,获得10
15秒前
zx完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
bkagyin应助leo采纳,获得10
16秒前
山茶发布了新的文献求助10
16秒前
17秒前
科研通AI6应助VDC采纳,获得10
17秒前
小苏完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013