The Technological Assessment of Green Buildings using Artificial Neural Networks

人工神经网络 工程类 人工智能 建筑工程 计算机科学
作者
Ying‐Sheng Huang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (16): e36400-e36400 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36400
摘要

This study aims to construct a comprehensive evaluation model for efficiently assessing appropriate technologies within green buildings. Initially, an Internet of Things (IoT)-based environmental monitoring system is devised and implemented to collect real-time environmental parameters both inside and outside the building. To evaluate the technical suitability of green buildings, this study employs a multifaceted approach encompassing various criteria, including energy efficiency, environmental impact, economic benefits, user comfort, and sustainability. Specifically, it involves real-time monitoring of environmental parameters, analysis of energy consumption data, and indoor environmental quality indicators derived from user satisfaction surveys. Subsequently, a Multi-Layer Perceptron (MLP) is selected as a conventional artificial neural network (ANN) model, while a Long Short-Term Memory (LSTM) model is chosen as an advanced recurrent neural network model in the realm of deep learning. These models are utilized to process and explore the collected data and assess the technical suitability of green buildings. The dataset comprises physical quantities such as temperature, humidity, and light intensity, as well as economic indicators including energy efficiency and building operating costs. Furthermore, the assessment process considers the building's life cycle assessment and indoor environmental quality factors such as health, comfort, and safety. By incorporating these comprehensive criteria, a holistic evaluation of green building technologies is achieved, ensuring the selected technologies' suitability and effectiveness. The model prediction results demonstrate that the proposed hybrid evaluation model exhibits high accuracy and robust stability in predicting building environmental parameters. For instance, the Root Mean Square Error (RMSE) for temperature prediction is 1.2 °C, the Mean Absolute Error (MAE) is 0.9 °C, and the determination coefficient (R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴空万里完成签到 ,获得积分10
刚刚
刚刚
1秒前
寒冷天亦完成签到,获得积分10
1秒前
sunoopp发布了新的文献求助10
3秒前
活泼的巧曼完成签到,获得积分10
4秒前
正直的蚂蚁完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
Yasmine完成签到 ,获得积分10
6秒前
bb发布了新的文献求助10
6秒前
6秒前
六尺巷发布了新的文献求助10
7秒前
8秒前
乔an发布了新的文献求助30
8秒前
8秒前
9秒前
bibi发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
古月完成签到,获得积分10
9秒前
10秒前
Frank完成签到 ,获得积分10
10秒前
个性白羊发布了新的文献求助10
11秒前
amanda完成签到 ,获得积分10
11秒前
12秒前
霜降应助逸风望采纳,获得10
12秒前
max发布了新的文献求助10
14秒前
14秒前
Jasper应助还单身的尔琴采纳,获得10
14秒前
林夏应助pray采纳,获得10
15秒前
15秒前
陈秋禹完成签到,获得积分10
15秒前
15秒前
小冯发布了新的文献求助10
15秒前
15秒前
16秒前
专注的问寒应助LIU采纳,获得50
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548