Inversion model of soil salinity in alfalfa covered farmland based on sensitive variable selection and machine learning algorithms

特征选择 支持向量机 算法 计算机科学 机器学习 随机森林 人工智能 均方误差 多光谱图像 遥感 人工神经网络 土壤盐分 环境科学 土壤科学 数学 土壤水分 统计 地质学
作者
Hong Mā,Wenju Zhao,Weicheng Duan,Fangfang Ma,Congcong Li,Zongli Li
出处
期刊:PeerJ [PeerJ]
卷期号:12: e18186-e18186
标识
DOI:10.7717/peerj.18186
摘要

Purpose Timely and accurate monitoring of soil salinity content (SSC) is essential for precise irrigation management of large-scale farmland. Uncrewed aerial vehicle (UAV) low-altitude remote sensing with high spatial and temporal resolution provides a scientific and effective technical means for SSC monitoring. Many existing soil salinity inversion models have only been tested by a single variable selection method or machine learning algorithm, and the influence of variable selection method combined with machine learning algorithm on the accuracy of soil salinity inversion remain further studied. Methods Firstly, based on UAV multispectral remote sensing data, by extracting the spectral reflectance of each sampling point to construct 30 spectral indexes, and using the pearson correlation coefficient (PCC), gray relational analysis (GRA), variable projection importance (VIP), and support vector machine-recursive feature elimination (SVM-RFE) to screen spectral index and realize the selection of sensitive variables. Subsequently, screened and unscreened variables as model input independent variables, constructed 20 soil salinity inversion models based on the support vector machine regression (SVM), back propagation neural network (BPNN), extreme learning machine (ELM), and random forest (RF) machine learning algorithms, the aim is to explore the feasibility of different variable selection methods combined with machine learning algorithms in SSC inversion of crop-covered farmland. To evaluate the performance of the soil salinity inversion model, the determination coefficient (R 2 ), root mean square error (RMSE) and performance deviation ratio (RPD) were used to evaluate the model performance, and determined the best variable selection method and soil salinity inversion model by taking alfalfa covered farmland in arid oasis irrigation areas of China as the research object. Results The variable selection combined with machine learning algorithm can significantly improve the accuracy of remote sensing inversion of soil salinity. The performance of the models has been improved markedly using the four variable selection methods, and the applicability varied among the four methods, the GRA variable selection method is suitable for SVM, BPNN, and ELM modeling, while the PCC method is suitable for RF modeling. The GRA-SVM is the best soil salinity inversion model in alfalfa cover farmland, with R v 2 of 0.8888, RMSE v of 0.1780, and RPD of 1.8115 based on the model verification dataset, and the spatial distribution map of soil salinity can truly reflect the degree of soil salinization in the study area. Conclusion Based on our findings, the variable selection combined with machine learning algorithm is an effective method to improve the accuracy of soil salinity remote sensing inversion, which provides a new approach for timely and accurate acquisition of crops covered farmland soil salinity information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助顾家老攻采纳,获得10
1秒前
淀粉肠完成签到 ,获得积分10
1秒前
CipherSage应助yzxzdm采纳,获得10
2秒前
2秒前
科研女郎完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
豪文完成签到,获得积分10
4秒前
6秒前
8秒前
Orange应助顾家老攻采纳,获得10
8秒前
Leslie发布了新的文献求助20
10秒前
10秒前
小吕完成签到,获得积分10
10秒前
10秒前
尊敬寒松完成签到 ,获得积分10
10秒前
有魅力的凝云完成签到,获得积分10
12秒前
12秒前
LY0201完成签到,获得积分20
14秒前
还单身的睿渊完成签到 ,获得积分10
14秒前
万能图书馆应助Moliria采纳,获得10
16秒前
MorningStar应助cqj123采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
达克赛德完成签到 ,获得积分10
19秒前
19秒前
21秒前
孤独的小蘑菇完成签到,获得积分20
21秒前
22秒前
情怀应助zbw采纳,获得10
22秒前
debu9发布了新的文献求助10
22秒前
静心发布了新的文献求助10
23秒前
23秒前
小马甲应助LY0201采纳,获得10
24秒前
25秒前
ira发布了新的文献求助10
26秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258254
求助须知:如何正确求助?哪些是违规求助? 2900050
关于积分的说明 8308708
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395633
科研通“疑难数据库(出版商)”最低求助积分说明 653184
邀请新用户注册赠送积分活动 631084