Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms

人工智能 高粱 支持向量机 稳健性(进化) RGB颜色模型 苗木 机器学习 计算机科学 数学 遥感 计算机视觉 农学 生物 地理 生物化学 基因
作者
Haishan Chen,Hui Chen,Huang Xiao-yun,Song Zhang,Shengxi Chen,Fulang Cen,Tengbing He,Quanzhi Zhao,Zhenran Gao
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1399872
摘要

Accurately counting the number of sorghum seedlings from images captured by unmanned aerial vehicles (UAV) is useful for identifying sorghum varieties with high seedling emergence rates in breeding programs. The traditional method is manual counting, which is time-consuming and laborious. Recently, UAV have been widely used for crop growth monitoring because of their low cost, and their ability to collect high-resolution images and other data non-destructively. However, estimating the number of sorghum seedlings is challenging because of the complexity of field environments. The aim of this study was to test three models for counting sorghum seedlings rapidly and automatically from red-green-blue (RGB) images captured at different flight altitudes by a UAV. The three models were a machine learning approach (Support Vector Machines, SVM) and two deep learning approaches (YOLOv5 and YOLOv8). The robustness of the models was verified using RGB images collected at different heights. The R 2 values of the model outputs for images captured at heights of 15 m, 30 m, and 45 m were, respectively, (SVM: 0.67, 0.57, 0.51), (YOLOv5: 0.76, 0.57, 0.56), and (YOLOv8: 0.93, 0.90, 0.71). Therefore, the YOLOv8 model was most accurate in estimating the number of sorghum seedlings. The results indicate that UAV images combined with an appropriate model can be effective for large-scale counting of sorghum seedlings. This method will be a useful tool for sorghum phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JWang完成签到,获得积分20
刚刚
1秒前
小橙子发布了新的文献求助30
1秒前
2秒前
科研通AI5应助zino采纳,获得10
2秒前
shepherd完成签到 ,获得积分10
2秒前
Brave_1完成签到 ,获得积分10
2秒前
8R60d8应助学术小黄采纳,获得10
3秒前
南宫萍完成签到,获得积分10
3秒前
3秒前
3秒前
小苔藓发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
快乐银耳汤应助FFF采纳,获得10
4秒前
shelly0621完成签到,获得积分10
4秒前
科研通AI5应助FFF采纳,获得10
4秒前
yyang完成签到,获得积分10
4秒前
穆思柔完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
脑洞疼应助Xu采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Dddd发布了新的文献求助10
7秒前
xx完成签到,获得积分20
7秒前
BEIBEI完成签到,获得积分10
7秒前
liyi发布了新的文献求助10
7秒前
苗条的山晴完成签到,获得积分10
7秒前
8秒前
mm完成签到,获得积分10
9秒前
JUll发布了新的文献求助10
9秒前
无奈抽屉完成签到 ,获得积分10
9秒前
9秒前
10秒前
风中的夏兰完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678