SHS: Scorpion Hunting Strategy Swarm Algorithm

群体行为 蝎子 算法 计算机科学 人工智能 渔业 生物 毒液
作者
Abhilash Singh,Seyed Muhammad Hossein Mousavi,Kumar Gaurav
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.14202
摘要

We introduced the Scorpion Hunting Strategy (SHS), a novel population-based, nature-inspired optimisation algorithm. This algorithm draws inspiration from the hunting strategy of scorpions, which identify, locate, and capture their prey using the alpha and beta vibration operators. These operators control the SHS algorithm's exploitation and exploration abilities. To formulate an optimisation method, we mathematically simulate these dynamic events and behaviors. We evaluate the effectiveness of the SHS algorithm by employing 20 benchmark functions (including 10 conventional and 10 CEC2020 functions), using both qualitative and quantitative analyses. Through a comparative analysis with 12 state-of-the-art meta-heuristic algorithms, we demonstrate that the proposed SHS algorithm yields exceptionally promising results. These findings are further supported by statistically significant results obtained through the Wilcoxon rank sum test. Additionally, the ranking of SHS, as determined by the average rank derived from the Friedman test, positions it at the forefront when compared to other algorithms. Going beyond theoretical validation, we showcase the practical utility of the SHS algorithm by applying it to six distinct real-world optimisation tasks. These applications illustrate the algorithm's potential in addressing complex optimisation challenges. In summary, this work not only introduces the innovative SHS algorithm but also substantiates its effectiveness and versatility through rigorous benchmarking and real-world problem-solving scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助周琦采纳,获得10
2秒前
婷婷完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Akim应助托姆斯突采纳,获得10
3秒前
4秒前
4秒前
念知秋完成签到,获得积分10
4秒前
shenshu发布了新的文献求助10
4秒前
5秒前
5秒前
大模型应助搞怪人雄采纳,获得10
5秒前
骆西西完成签到,获得积分10
5秒前
6秒前
7秒前
Mia233完成签到 ,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
NexusExplorer应助ZZZ采纳,获得10
9秒前
忆塔基完成签到,获得积分10
9秒前
10秒前
Mary发布了新的文献求助10
10秒前
杨yang发布了新的文献求助10
11秒前
11秒前
时尚凝海完成签到,获得积分10
11秒前
君打豆发布了新的文献求助10
11秒前
托姆斯突完成签到,获得积分20
11秒前
siina发布了新的文献求助10
11秒前
mingshi发布了新的文献求助10
12秒前
chenct002发布了新的文献求助10
12秒前
王佳佳发布了新的文献求助10
12秒前
乐乐应助饱满的丹南采纳,获得10
13秒前
13秒前
13秒前
哎咿呀哎呀完成签到,获得积分10
14秒前
似水流年完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078