SHS: Scorpion Hunting Strategy Swarm Algorithm

群体行为 蝎子 算法 计算机科学 人工智能 渔业 生物 毒液
作者
Abhilash Singh,Seyed Muhammad Hossein Mousavi,Kumar Gaurav
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.14202
摘要

We introduced the Scorpion Hunting Strategy (SHS), a novel population-based, nature-inspired optimisation algorithm. This algorithm draws inspiration from the hunting strategy of scorpions, which identify, locate, and capture their prey using the alpha and beta vibration operators. These operators control the SHS algorithm's exploitation and exploration abilities. To formulate an optimisation method, we mathematically simulate these dynamic events and behaviors. We evaluate the effectiveness of the SHS algorithm by employing 20 benchmark functions (including 10 conventional and 10 CEC2020 functions), using both qualitative and quantitative analyses. Through a comparative analysis with 12 state-of-the-art meta-heuristic algorithms, we demonstrate that the proposed SHS algorithm yields exceptionally promising results. These findings are further supported by statistically significant results obtained through the Wilcoxon rank sum test. Additionally, the ranking of SHS, as determined by the average rank derived from the Friedman test, positions it at the forefront when compared to other algorithms. Going beyond theoretical validation, we showcase the practical utility of the SHS algorithm by applying it to six distinct real-world optimisation tasks. These applications illustrate the algorithm's potential in addressing complex optimisation challenges. In summary, this work not only introduces the innovative SHS algorithm but also substantiates its effectiveness and versatility through rigorous benchmarking and real-world problem-solving scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文文完成签到,获得积分20
刚刚
丹丹完成签到,获得积分10
1秒前
上官若男应助RebeccaHe采纳,获得10
2秒前
鱼海寻俞发布了新的文献求助10
2秒前
3秒前
3秒前
renpp822发布了新的文献求助10
4秒前
HHHHH发布了新的文献求助10
4秒前
滴滴滴发布了新的文献求助10
4秒前
斯文败类应助July采纳,获得10
4秒前
5秒前
翻似烂柯人完成签到,获得积分10
5秒前
zhang完成签到,获得积分10
5秒前
川农辅导员完成签到,获得积分10
6秒前
深情安青应助品品采纳,获得10
6秒前
LLLK发布了新的文献求助10
6秒前
林夕完成签到,获得积分10
6秒前
霸气以菱完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
陆千万发布了新的文献求助10
8秒前
CodeCraft应助懵了采纳,获得10
8秒前
duxh123完成签到,获得积分10
9秒前
福明明完成签到,获得积分10
9秒前
SCIER完成签到,获得积分10
9秒前
小瓶子发布了新的文献求助10
10秒前
10秒前
阿乐完成签到,获得积分10
10秒前
orixero应助迅哥采纳,获得10
10秒前
科研通AI2S应助标致贞采纳,获得10
11秒前
11秒前
ff完成签到 ,获得积分10
11秒前
李健应助西岭采纳,获得10
12秒前
12秒前
科研通AI2S应助糕糕采纳,获得10
12秒前
12秒前
勤劳代亦完成签到,获得积分10
13秒前
科研通AI2S应助HHHHH采纳,获得10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685