High‐stable all‐iron redox flow battery with innovative anolyte based on steric hindrance regulation

流动电池 位阻效应 氧化还原 电解质 储能 电池(电) 化学 铁质 化学工程 组合化学 材料科学 无机化学 立体化学 有机化学 物理化学 电极 热力学 物理 工程类 功率(物理)
作者
Jiahui Yang,Wei Wei,Chengxi Zhou,Hui Yan,Hang-Xin Che,Leiduan Hao,Xinyi Tan,Alex W. Robertson,Tai‐Sing Wu,Y. L. Soo,Ao Tang,Zhenyu Sun
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202414452
摘要

All‐soluble all‐iron redox flow batteries (AIRFBs) are an innovative energy storage technology that offer significant financial benefits. Stable and affordable redox‐active materials are essential for the commercialization of AIRFBs, yet the battery stability must be significantly improved to achieve practical value. Herein, ferrous complexes combined with the triisopropanolamine (TIPA) ligand are identified as promising anolytes to extend battery life by reducing cross‐contamination due to a pronounced steric hindrance effect. The coordination structure and failure mechanism of our Fe‐TIPA complexes were determined by molecular dynamics simulation and spectroscopic experiments. By coupling with [Fe(CN)6]4 −/3− , Fe‐TIPA/Fe‐CN AIRFBs retained excellent stability exceeding 1831 cycles at 80 mA·cm −2 , yielding an energy efficiency of ~80% and maintaining a steady discharge capacity. Moreover, the all‐soluble electrolyte was tested in an industrial‐scale Fe‐TIPA/Fe‐CN AIRFB prototype energy storage system, where an energy efficiency of 81.3% was attained. Given the abundance of iron resources, we model the TIPA AIRFB electrolyte cost to be as low as 32.37 $/kWh, which is significantly cheaper than the current commercial level. This work demonstrates that steric hindrance is an effective measure to extended battery life, facilitating the commercial development of affordable flow batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
端庄的冰之完成签到,获得积分10
1秒前
西门明雪完成签到,获得积分10
1秒前
qinghuan应助漂亮幻莲采纳,获得60
1秒前
科研通AI5应助轻松的澜采纳,获得10
1秒前
Yuan88完成签到,获得积分10
2秒前
sube完成签到,获得积分10
2秒前
大花卷完成签到,获得积分10
2秒前
2秒前
3秒前
ikun发布了新的文献求助10
3秒前
3秒前
4秒前
宁柠咛完成签到,获得积分10
4秒前
邓紫棋的歌_完成签到 ,获得积分10
4秒前
ll123发布了新的文献求助10
4秒前
小蘑菇应助rqy采纳,获得10
5秒前
琴l发布了新的文献求助10
5秒前
6秒前
杉杉发布了新的文献求助10
6秒前
7秒前
充电宝应助尊敬的芷卉采纳,获得10
7秒前
7秒前
8秒前
8秒前
迷人白梦发布了新的文献求助10
8秒前
丘比特应助Jke采纳,获得10
9秒前
xmd发布了新的文献求助10
9秒前
10秒前
10秒前
Fine完成签到,获得积分10
11秒前
Unpredictable发布了新的文献求助10
11秒前
11秒前
领导范儿应助啦啦啦采纳,获得10
11秒前
longshengyan完成签到,获得积分10
11秒前
朴素阁完成签到,获得积分20
12秒前
共享精神应助寂寞的板凳采纳,获得10
13秒前
欣喜宛亦发布了新的文献求助10
13秒前
13秒前
天真的小丰色完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421