流动电池
位阻效应
氧化还原
电解质
储能
电池(电)
化学
铁质
化学工程
组合化学
材料科学
无机化学
立体化学
有机化学
物理化学
电极
热力学
物理
工程类
功率(物理)
作者
Jiahui Yang,Wei Wei,Chengxi Zhou,Hui Yan,Hang-Xin Che,Leiduan Hao,Xinyi Tan,Alex W. Robertson,Tai‐Sing Wu,Y. L. Soo,Ao Tang,Zhenyu Sun
标识
DOI:10.1002/anie.202414452
摘要
All‐soluble all‐iron redox flow batteries (AIRFBs) are an innovative energy storage technology that offer significant financial benefits. Stable and affordable redox‐active materials are essential for the commercialization of AIRFBs, yet the battery stability must be significantly improved to achieve practical value. Herein, ferrous complexes combined with the triisopropanolamine (TIPA) ligand are identified as promising anolytes to extend battery life by reducing cross‐contamination due to a pronounced steric hindrance effect. The coordination structure and failure mechanism of our Fe‐TIPA complexes were determined by molecular dynamics simulation and spectroscopic experiments. By coupling with [Fe(CN)6]4 −/3− , Fe‐TIPA/Fe‐CN AIRFBs retained excellent stability exceeding 1831 cycles at 80 mA·cm −2 , yielding an energy efficiency of ~80% and maintaining a steady discharge capacity. Moreover, the all‐soluble electrolyte was tested in an industrial‐scale Fe‐TIPA/Fe‐CN AIRFB prototype energy storage system, where an energy efficiency of 81.3% was attained. Given the abundance of iron resources, we model the TIPA AIRFB electrolyte cost to be as low as 32.37 $/kWh, which is significantly cheaper than the current commercial level. This work demonstrates that steric hindrance is an effective measure to extended battery life, facilitating the commercial development of affordable flow batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI