Belief-Rule-Based System with Self-organizing and Multi-temporal Modeling for Sensor-based Human Activity Recognition

计算机科学 人工智能 模式识别(心理学) 活动识别 数据挖掘
作者
Long-Hao Yang,Fei-Fei Ye,Chris Nugent,Jun Liu,Ying-Ming Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3485871
摘要

Smart environment is an efficient and cost- effective way to afford intelligent supports for the elderly people. Human activity recognition (HAR) is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based HAR model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
清秀白梦发布了新的文献求助10
2秒前
小运佳发布了新的文献求助10
3秒前
科研刘发布了新的文献求助10
3秒前
4秒前
阳光he发布了新的文献求助30
4秒前
science应助仁爱亦巧采纳,获得30
5秒前
shelemi发布了新的文献求助10
6秒前
火星上的养鸡人完成签到,获得积分10
6秒前
半只小羊完成签到 ,获得积分10
6秒前
8秒前
早晚炸了学校完成签到 ,获得积分10
8秒前
田兆鹏完成签到,获得积分10
10秒前
10秒前
10秒前
清爽子默发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
科研通AI5应助90采纳,获得10
13秒前
高木同学发布了新的文献求助10
14秒前
xx完成签到,获得积分10
14秒前
14秒前
Cheng完成签到 ,获得积分10
15秒前
shenglll发布了新的文献求助20
15秒前
星辰大海应助迅速含卉采纳,获得10
16秒前
oryWang发布了新的文献求助10
17秒前
Megumi发布了新的文献求助10
17秒前
Hina完成签到,获得积分10
17秒前
science应助仁爱亦巧采纳,获得30
17秒前
laola发布了新的文献求助10
18秒前
在水一方应助乐观的颦采纳,获得30
18秒前
思源应助听雨采纳,获得10
18秒前
怕孤单的觅夏完成签到,获得积分20
19秒前
20秒前
过雪完成签到 ,获得积分10
20秒前
SYLH应助LL采纳,获得10
21秒前
科研通AI5应助LL采纳,获得10
21秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476452
求助须知:如何正确求助?哪些是违规求助? 3068067
关于积分的说明 9106438
捐赠科研通 2759609
什么是DOI,文献DOI怎么找? 1514156
邀请新用户注册赠送积分活动 700093
科研通“疑难数据库(出版商)”最低求助积分说明 699284