Viscoelasticity of Hyaluronic Acid Hydrogels Regulates Human Pluripotent Stem Cell‐derived Spinal Cord Organoid Patterning and Vascularization

自愈水凝胶 粘弹性 透明质酸 细胞外基质 类有机物 材料科学 组织工程 再生医学 生物物理学 干细胞 纳米技术 生物医学工程 化学 细胞生物学 解剖 生物化学 生物 复合材料 高分子化学 医学
作者
Xingchi Chen,Chang Liu,Garrett McDaniel,Olivia Z. Zeng,Jamel Ali,Yi Zhou,Xueju Wang,Tristan P. Driscoll,Changchun Zeng,Yan Li
出处
期刊:Advanced Healthcare Materials [Wiley]
被引量:10
标识
DOI:10.1002/adhm.202402199
摘要

Abstract Recently, it has been recognized that natural extracellular matrix (ECM) and tissues are viscoelastic, while only elastic properties have been investigated in the past. How the viscoelastic matrix regulates stem cell patterning is critical for cell‐ECM mechano‐transduction. Here, this study fabricated different methacrylated hyaluronic acid (HA) hydrogels using covalent cross–linking, consisting of two gels with similar elasticity (stiffness) but different viscoelasticity, and two gels with similar viscoelasticity but different elasticity (stiffness). Meanwhile, a second set of dual network hydrogels are fabricated containing both covalent and coordinated cross–links. Human spinal cord organoid (hSCO) patterning in HA hydrogels and co‐culture with isogenic human blood vessel organoids (hBVOs) are investigated. The viscoelastic hydrogels promote regional hSCO patterning compared to the elastic hydrogels. More viscoelastic hydrogels can promote dorsal marker expression, while softer hydrogels result in higher interneuron marker expression. The effects of viscoelastic properties of the hydrogels become more dominant than the stiffness effects in the co‐culture of hSCOs and hBVOs. In addition, more viscoelastic hydrogels can lead to more Yes‐associated protein nuclear translocation, revealing the mechanism of cell‐ECM mechano‐transduction. This research provides insights into viscoelastic behaviors of the hydrogels during human organoid patterning with ECM‐mimicking in vitro microenvironments for applications in regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Picachu完成签到 ,获得积分10
1秒前
一页书发布了新的文献求助10
1秒前
石翎完成签到,获得积分10
1秒前
May发布了新的文献求助10
1秒前
1秒前
咕嘟咕嘟发布了新的文献求助10
2秒前
白马爱毛驴完成签到,获得积分10
2秒前
如意完成签到,获得积分10
2秒前
SYBH完成签到,获得积分10
2秒前
聪慧咖啡豆完成签到,获得积分10
2秒前
3秒前
3秒前
学学学完成签到 ,获得积分10
3秒前
JamesPei应助liu采纳,获得10
3秒前
温尔应助tianmafei采纳,获得10
3秒前
小蜗牛完成签到,获得积分10
3秒前
4秒前
天真的涵易关注了科研通微信公众号
4秒前
菠萝冰棒发布了新的文献求助10
4秒前
hsy完成签到,获得积分10
4秒前
舒服的初蓝完成签到,获得积分10
5秒前
共享精神应助生产队的LV采纳,获得10
5秒前
kk完成签到 ,获得积分10
6秒前
BayMax完成签到,获得积分10
6秒前
太叔明辉完成签到,获得积分10
6秒前
鲁松发布了新的文献求助80
6秒前
等待的忻完成签到,获得积分10
6秒前
7秒前
Nuyoah发布了新的文献求助10
7秒前
欣喜落雁完成签到,获得积分10
7秒前
伶俐剑心发布了新的文献求助30
7秒前
ws发布了新的文献求助10
7秒前
7秒前
CipherSage应助内向以彤采纳,获得10
7秒前
瑞少完成签到,获得积分10
8秒前
8秒前
外向孤容完成签到,获得积分20
8秒前
8秒前
晴天完成签到,获得积分10
9秒前
烂漫的从彤完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024