Construction of an interpretable model for predicting survival outcomes in patients with middle to advanced hepatocellular carcinoma (≥5 cm) using lasso-cox regression

肝细胞癌 Lasso(编程语言) 比例危险模型 医学 回归 肿瘤科 内科学 回归分析 统计 机器学习 计算机科学 数学 万维网
作者
Han Li,Bo Yang,Chenjie Wang,Bo Li,Lei Han,Yi Jiang,Yanqiong Song,Lianbin Wen,Mingyue Rao,Jianwen Zhang,Xueting Li,Kun He,Yunwei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1452201
摘要

Background In this retrospective study, we aimed to identify key risk factors and establish an interpretable model for HCC with a diameter ≥ 5 cm using Lasso regression for effective risk stratification and clinical decision-making. Methods In this study, 843 patients with advanced hepatocellular carcinoma (HCC) and tumor diameter ≥ 5 cm were included. Using Lasso regression to screen multiple characteristic variables, cox proportional hazard regression and random survival forest models (RSF) were established. By comparing the area under the curve (AUC), the optimal model was selected. The model was visualized, and the order of interpretable importance was determined. Finally, risk stratification was established to identify patients at high risk. Result Lasso regression identified 8 factors as characteristic risk factors. Subsequent analysis revealed that the lasso-cox model had AUC values of 0.773, 0.758, and 0.799, while the lasso-RSF model had AUC values of 0.734, 0.695, and 0.741, respectively. Based on these results, the lasso-cox model was chosen as the superior model. Interpretability assessments using SHAP values indicated that the most significant characteristic risk factors, in descending order of importance, were tumor number, BCLC stage, alkaline phosphatase (ALP), ascites, albumin (ALB), and aspartate aminotransferase (AST). Additionally, through risk score stratification and subgroup analysis, it was observed that the median OS of the low-risk group was significantly better than that of the middle- and high-risk groups. Conclusion We have developed an interpretable predictive model for middle and late HCC with tumor diameter ≥ 5 cm using lasso-cox regression analysis. This model demonstrates excellent prediction performance and can be utilized for risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马先生发布了新的文献求助10
1秒前
2秒前
2秒前
星辰发布了新的文献求助10
2秒前
kelsiwang完成签到,获得积分10
3秒前
rational完成签到,获得积分20
3秒前
Dai发布了新的文献求助10
3秒前
欣喜涔雨发布了新的文献求助10
4秒前
5秒前
沉默发布了新的文献求助400
6秒前
李键刚发布了新的文献求助10
6秒前
芝麻糊了发布了新的文献求助100
7秒前
Willow发布了新的文献求助10
8秒前
8秒前
舒心烤鸡发布了新的文献求助30
8秒前
8秒前
9秒前
风清扬应助老金金采纳,获得30
9秒前
彘shen发布了新的文献求助10
9秒前
9秒前
10秒前
执着傲柏完成签到,获得积分10
10秒前
mtb完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
huangtian205完成签到,获得积分20
11秒前
12秒前
dolla发布了新的文献求助10
13秒前
Yiy完成签到 ,获得积分0
13秒前
同志同志发布了新的文献求助10
13秒前
执着傲柏发布了新的文献求助10
14秒前
小马甲应助冷艳的火龙果采纳,获得10
14秒前
15秒前
哈哈哈哈哈哈完成签到,获得积分10
15秒前
16秒前
然然然完成签到 ,获得积分10
17秒前
18秒前
怕黑代双发布了新的文献求助10
18秒前
笨笨念文完成签到 ,获得积分10
19秒前
19秒前
orixero应助花花采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406273
求助须知:如何正确求助?哪些是违规求助? 4524343
关于积分的说明 14097694
捐赠科研通 4438130
什么是DOI,文献DOI怎么找? 2435995
邀请新用户注册赠送积分活动 1428126
关于科研通互助平台的介绍 1406280