Construction of an interpretable model for predicting survival outcomes in patients with middle to advanced hepatocellular carcinoma (≥5 cm) using lasso-cox regression

肝细胞癌 Lasso(编程语言) 比例危险模型 医学 回归 肿瘤科 内科学 回归分析 统计 机器学习 计算机科学 数学 万维网
作者
Han Li,Bo Yang,Chenjie Wang,Bo Li,Lei Han,Yi Jiang,Yanqiong Song,Lianbin Wen,Mingyue Rao,Jianwen Zhang,Xueting Li,Kun He,Yunwei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1452201
摘要

Background In this retrospective study, we aimed to identify key risk factors and establish an interpretable model for HCC with a diameter ≥ 5 cm using Lasso regression for effective risk stratification and clinical decision-making. Methods In this study, 843 patients with advanced hepatocellular carcinoma (HCC) and tumor diameter ≥ 5 cm were included. Using Lasso regression to screen multiple characteristic variables, cox proportional hazard regression and random survival forest models (RSF) were established. By comparing the area under the curve (AUC), the optimal model was selected. The model was visualized, and the order of interpretable importance was determined. Finally, risk stratification was established to identify patients at high risk. Result Lasso regression identified 8 factors as characteristic risk factors. Subsequent analysis revealed that the lasso-cox model had AUC values of 0.773, 0.758, and 0.799, while the lasso-RSF model had AUC values of 0.734, 0.695, and 0.741, respectively. Based on these results, the lasso-cox model was chosen as the superior model. Interpretability assessments using SHAP values indicated that the most significant characteristic risk factors, in descending order of importance, were tumor number, BCLC stage, alkaline phosphatase (ALP), ascites, albumin (ALB), and aspartate aminotransferase (AST). Additionally, through risk score stratification and subgroup analysis, it was observed that the median OS of the low-risk group was significantly better than that of the middle- and high-risk groups. Conclusion We have developed an interpretable predictive model for middle and late HCC with tumor diameter ≥ 5 cm using lasso-cox regression analysis. This model demonstrates excellent prediction performance and can be utilized for risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助麋鹿采纳,获得10
刚刚
刘豆豆完成签到,获得积分20
1秒前
2秒前
bkagyin应助zw采纳,获得10
5秒前
如果发布了新的文献求助10
6秒前
bkagyin应助十月二十采纳,获得10
8秒前
8秒前
11秒前
盛欢发布了新的文献求助10
13秒前
13秒前
ygp完成签到 ,获得积分10
14秒前
走之完成签到,获得积分10
15秒前
18秒前
Mooooollly发布了新的文献求助10
18秒前
bai完成签到,获得积分10
19秒前
金也完成签到,获得积分10
20秒前
雄关漫道完成签到,获得积分10
20秒前
23秒前
英姑应助wing00024采纳,获得10
24秒前
mark707发布了新的文献求助10
24秒前
我是老大应助JXJ采纳,获得10
24秒前
24秒前
25秒前
lsl完成签到,获得积分20
26秒前
天真的芒果完成签到,获得积分20
26秒前
26秒前
Ava应助心怡采纳,获得10
29秒前
无奈草丛完成签到 ,获得积分10
29秒前
金也发布了新的文献求助10
29秒前
麋鹿发布了新的文献求助10
30秒前
Cat应助怡心亭采纳,获得20
30秒前
Russell完成签到,获得积分10
30秒前
lsl发布了新的文献求助10
31秒前
32秒前
英俊的铭应助盛欢采纳,获得10
33秒前
cunzhang完成签到,获得积分10
34秒前
35秒前
37秒前
38秒前
38秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Artificial Intelligence, Co-Creation and Creativity 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
The Neotropical “Polymorphic Earless Praying Mantises”–Part II: Taxonomic Review of the Genera and Checklist of Species (Insecta: Mantodea, Acanthopoidea) 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090689
求助须知:如何正确求助?哪些是违规求助? 2742879
关于积分的说明 7571483
捐赠科研通 2393429
什么是DOI,文献DOI怎么找? 1269340
科研通“疑难数据库(出版商)”最低求助积分说明 614310
版权声明 598756