光容积图
均方误差
血压
标准差
波形
脉冲压力
特征(语言学)
平均绝对误差
模式识别(心理学)
随机森林
人工智能
传感器融合
计算机科学
医学
数学
统计
内科学
电信
雷达
无线
语言学
哲学
作者
Jianjun Yan,Sheng Wang,Rui Guo,Haixia Yan,Yiqin Wang,Wenbo Qiu
出处
期刊:Measurement
[Elsevier]
日期:2024-08-03
卷期号:240: 115446-115446
标识
DOI:10.1016/j.measurement.2024.115446
摘要
Cardiovascular diseases are now the leading cause of death that endangers people's health. Thus, a precise and dependable blood pressure (BP) prediction method is essential. This paper proposes a noninvasive BP prediction method with the fusion of electrocardiogram (ECG), photoplethysmography (PPG), and pressure pulse waveform (PPW) features. A multi-sensor information acquisition platform was developed. Besides, the algorithms were designed to clean, preprocess, and extract features from sample data. Finally, feature selection and feature fusion created the Random Forest Regression (RFR) BP prediction model feature set. The RFR predicted diastolic blood pressure with a mean absolute error (MAE) of 0.90 mmHg, a mean square error (MSE) of 6.48 mmHg, and a standard deviation (STD) of 2.47 mmHg; and systolic blood pressure with a mean absolute error (MAE) of 0.64 mmHg, a mean square error (MSE) of 2.31 mmHg, and a standard deviation (STD) of 1.53 mmHg.
科研通智能强力驱动
Strongly Powered by AbleSci AI