已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive resilience assessment of road networks based on dynamic multi-granularity graph neural network

弹性(材料科学) 计算机科学 粒度 预警系统 电信 操作系统 物理 热力学
作者
Di Zang,Yongjie Ding,Jiayi Zhao,Keshuang Tang,Hongtao Zhu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:601: 128207-128207 被引量:1
标识
DOI:10.1016/j.neucom.2024.128207
摘要

Due to the influence of global climate anomalies, abnormal weather conditions such as heavy rainfall have become more frequent in recent years, posing a significant threat to the operation of transportation systems. An effective assessment of the resilience of the transportation system before and during heavy rain can alert the transportation department to take necessary emergency actions. However, existing methods for assessing the rainfall resilience of transportation networks mostly suffer from the following problems: (1) Simulation methods for modeling rainfall impacts lack realism; (2) After-the-fact evaluations of resilience cannot offer advance warning prior to or during a heavy rain event. To address above problems, we present a novel resilience assessment methodology for evaluating the resilience of road networks in real-time during heavy rainfall scenarios. In this methodology, we propose the temporal decomposition-based dynamic multi-granularity graph neural network (TD2MG2NN) for long-term traffic speed forecasting, providing a perspective on the future evolution of traffic states for accurate resilience assessment. In addition, we construct a composite traffic resilience indicator, designed to comprehensively reflect changes in the spatial–temporal resilience of the transportation system during heavy rain. Experimental results on four publicly real datasets indicate that the prediction performance of TD2MG2NN outperforms state-of-the-art models. The assessment results for the transportation road network in California demonstrate that the comprehensive resilience indicator is superior to single functional resilience indicator and the real-time methodology for evaluating resilience can accurately depict and predict the operation of the road network system under heavy rainfall scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rick发布了新的文献求助10
1秒前
1秒前
liwang9301完成签到,获得积分10
2秒前
666发布了新的文献求助10
3秒前
dffad完成签到,获得积分10
3秒前
剑道尘心完成签到 ,获得积分10
4秒前
5秒前
大模型应助lily采纳,获得10
6秒前
汉堡包应助Rick采纳,获得10
7秒前
泽风发布了新的文献求助10
7秒前
蛋黄酥呀发布了新的文献求助10
10秒前
经纲完成签到 ,获得积分0
13秒前
妙手回春板蓝根完成签到,获得积分10
13秒前
和平完成签到 ,获得积分10
14秒前
小张完成签到 ,获得积分10
15秒前
就看最后一篇完成签到 ,获得积分10
15秒前
我是老大应助泽风采纳,获得10
16秒前
ljw完成签到,获得积分20
17秒前
张张关注了科研通微信公众号
18秒前
打打完成签到 ,获得积分10
20秒前
文艺的曼柔完成签到 ,获得积分10
22秒前
Obliviate完成签到,获得积分10
25秒前
25秒前
王富贵完成签到,获得积分10
27秒前
蛋黄酥呀完成签到,获得积分20
27秒前
张张发布了新的文献求助10
32秒前
Jasper应助xiaojun采纳,获得30
36秒前
椿人完成签到 ,获得积分10
41秒前
41秒前
文艺的青旋完成签到 ,获得积分10
44秒前
44秒前
北杨发布了新的文献求助10
44秒前
Hello应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
顾矜应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
ding应助科研通管家采纳,获得10
46秒前
nenoaowu应助科研通管家采纳,获得30
46秒前
CipherSage应助科研通管家采纳,获得10
46秒前
Akim应助科研通管家采纳,获得10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352