Adaptive Two-Stage Stochastic Programming with an Analysis on Capacity Expansion Planning Problem

随机规划 计算机科学 阶段(地层学) 动态规划 数学优化 产能规划 运筹学 运营管理 经济 数学 古生物学 生物
作者
Beste Basciftci,Shabbir Ahmed,Nagi Gebraeel
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/msom.2023.0157
摘要

Problem definition: Multistage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that can be dynamically adjusted as uncertainty is realized. Often, for example, because of contractual constraints, such flexible policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of periods. Two-stage stochastic programming might be better suited to such settings, where first-stage decisions do not adapt to the uncertainty realized. In this paper, we propose a novel alternative approach, named as adaptive two-stage stochastic programming, where each component of the decision policy requiring limited flexibility has its own revision point, a period prior to which the decisions are determined at the beginning of the planning until this revision point, and after which they are revised for adjusting to the uncertainty realized thus far until the end of the planning. We then analyze this approach over the capacity expansion planning problem, that may require limited flexibility over expansion decisions. Methodology/results: We provide a generic mixed-integer programming formulation for the adaptive two-stage stochastic programming problem with finite support, in particular, for scenario trees, and show that this problem is NP-hard in general. Next, we focus on the capacity expansion planning problem and derive bounds on the value of adaptive two-stage programming in comparison with the two-stage and multistage approaches in terms of revision points. We propose several heuristic solution algorithms based on this bound analysis. These algorithms either provide approximation guarantees or computational advantages in solving the resulting adaptive two-stage stochastic problem. Managerial implications: We provide insights on the choice of the revision times based on our analytical analysis. We further present an extensive computational study on a generation capacity expansion planning problem with different generation resources including renewable energy. We demonstrate the value of adopting adaptive two-stage approach against the existing policies under limited flexibility and highlight the efficiency of the proposed heuristics along with practical implications on the studied problem. Funding: This work was supported by the National Science Foundation [Grant 1633196] and the Office of Naval Research [Grant N00014-18-1-2075]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.0157 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
我是老大应助cm采纳,获得10
6秒前
9秒前
吾星安处完成签到,获得积分10
9秒前
ccc完成签到,获得积分10
10秒前
mmmm给nushell的求助进行了留言
10秒前
abc123完成签到,获得积分10
11秒前
竹音完成签到,获得积分10
14秒前
慕梦安发布了新的文献求助20
15秒前
每文发布了新的文献求助10
15秒前
开放念柏发布了新的文献求助30
15秒前
16秒前
16秒前
JXZZ完成签到,获得积分10
16秒前
蓝胖子完成签到 ,获得积分10
18秒前
h'c'z完成签到,获得积分10
18秒前
cm发布了新的文献求助10
19秒前
求帮助完成签到,获得积分10
20秒前
闫磊发布了新的文献求助10
20秒前
bababaaa完成签到,获得积分10
21秒前
FashionBoy应助MascaraEd采纳,获得10
21秒前
暴躁的薯条完成签到,获得积分10
22秒前
852应助小辣条采纳,获得10
25秒前
sunianjinshi完成签到,获得积分10
25秒前
吴大振完成签到,获得积分10
26秒前
星辰大海应助mulidexin2021采纳,获得10
27秒前
27秒前
炙热谷雪发布了新的文献求助10
27秒前
melon完成签到 ,获得积分10
29秒前
墨墨完成签到,获得积分10
30秒前
红泥小火炉完成签到,获得积分10
32秒前
炙心完成签到,获得积分10
33秒前
33秒前
33秒前
吾星安处发布了新的文献求助20
34秒前
柚子茶完成签到 ,获得积分10
35秒前
35秒前
36秒前
CodeCraft应助稳重的秋天采纳,获得10
37秒前
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905