Adaptive Two-Stage Stochastic Programming with an Analysis on Capacity Expansion Planning Problem

随机规划 计算机科学 阶段(地层学) 动态规划 数学优化 产能规划 运筹学 运营管理 经济 数学 古生物学 生物
作者
Beste Basciftci,Shabbir Ahmed,Nagi Gebraeel
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/msom.2023.0157
摘要

Problem definition: Multistage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that can be dynamically adjusted as uncertainty is realized. Often, for example, because of contractual constraints, such flexible policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of periods. Two-stage stochastic programming might be better suited to such settings, where first-stage decisions do not adapt to the uncertainty realized. In this paper, we propose a novel alternative approach, named as adaptive two-stage stochastic programming, where each component of the decision policy requiring limited flexibility has its own revision point, a period prior to which the decisions are determined at the beginning of the planning until this revision point, and after which they are revised for adjusting to the uncertainty realized thus far until the end of the planning. We then analyze this approach over the capacity expansion planning problem, that may require limited flexibility over expansion decisions. Methodology/results: We provide a generic mixed-integer programming formulation for the adaptive two-stage stochastic programming problem with finite support, in particular, for scenario trees, and show that this problem is NP-hard in general. Next, we focus on the capacity expansion planning problem and derive bounds on the value of adaptive two-stage programming in comparison with the two-stage and multistage approaches in terms of revision points. We propose several heuristic solution algorithms based on this bound analysis. These algorithms either provide approximation guarantees or computational advantages in solving the resulting adaptive two-stage stochastic problem. Managerial implications: We provide insights on the choice of the revision times based on our analytical analysis. We further present an extensive computational study on a generation capacity expansion planning problem with different generation resources including renewable energy. We demonstrate the value of adopting adaptive two-stage approach against the existing policies under limited flexibility and highlight the efficiency of the proposed heuristics along with practical implications on the studied problem. Funding: This work was supported by the National Science Foundation [Grant 1633196] and the Office of Naval Research [Grant N00014-18-1-2075]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.0157 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Olivia完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
娅娅发布了新的文献求助10
4秒前
小吴小吴发布了新的文献求助10
4秒前
nml关闭了nml文献求助
5秒前
CodeCraft应助xin采纳,获得10
5秒前
CipherSage应助Yu采纳,获得10
6秒前
量子星尘发布了新的文献求助10
10秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
玛卡巴卡发布了新的文献求助20
19秒前
hhh发布了新的文献求助10
20秒前
科研通AI5应助xin采纳,获得10
21秒前
22秒前
开朗穆发布了新的文献求助10
25秒前
25秒前
25秒前
huiya应助吱唔猪采纳,获得10
27秒前
乐橙发布了新的文献求助10
28秒前
fifi发布了新的文献求助10
29秒前
30秒前
31秒前
maox1aoxin应助EvenCai采纳,获得30
32秒前
量子星尘发布了新的文献求助10
33秒前
liliy发布了新的文献求助10
33秒前
emp完成签到,获得积分10
33秒前
认真谷雪完成签到,获得积分10
34秒前
36秒前
37秒前
科研通AI2S应助吱唔猪采纳,获得10
37秒前
XZY发布了新的文献求助10
37秒前
小白牛发布了新的文献求助10
37秒前
38秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
喵喵完成签到,获得积分10
40秒前
42秒前
刘十三完成签到,获得积分10
42秒前
leslie完成签到,获得积分10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664632
求助须知:如何正确求助?哪些是违规求助? 3224535
关于积分的说明 9758095
捐赠科研通 2934477
什么是DOI,文献DOI怎么找? 1606882
邀请新用户注册赠送积分活动 758897
科研通“疑难数据库(出版商)”最低求助积分说明 735053