Learning to quantify uncertainty in off-target activity for CRISPR guide RNAs

清脆的 生物 引导RNA 基因组编辑 计算机科学 计算生物学 生物信息学 Cas9 骨料(复合) 机器学习 遗传学 基因 材料科学 复合材料
作者
Furkan Özden,Péter Mináry
出处
期刊:Nucleic Acids Research [Oxford University Press]
标识
DOI:10.1093/nar/gkae759
摘要

CRISPR-based genome editing technologies have revolutionised the field of molecular biology, offering unprecedented opportunities for precise genetic manipulation. However, off-target effects remain a significant challenge, potentially leading to unintended consequences and limiting the applicability of CRISPR-based genome editing technologies in clinical settings. Current literature predominantly focuses on point predictions for off-target activity, which may not fully capture the range of possible outcomes and associated risks. Here, we present crispAI, a neural network architecture-based approach for predicting uncertainty estimates for off-target cleavage activity, providing a more comprehensive risk assessment and facilitating improved decision-making in single guide RNA (sgRNA) design. Our approach makes use of the count noise model Zero Inflated Negative Binomial (ZINB) to model the uncertainty in the off-target cleavage activity data. In addition, we present the first-of-its-kind genome-wide sgRNA efficiency score, crispAI-aggregate, enabling prioritization among sgRNAs with similar point aggregate predictions by providing richer information compared to existing aggregate scores. We show that uncertainty estimates of our approach are calibrated and its predictive performance is superior to the state-of-the-art in silico off-target cleavage activity prediction methods. The tool and the trained models are available at https://github.com/furkanozdenn/crispr-offtarget-uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dany发布了新的文献求助10
刚刚
刚刚
刚刚
是风动完成签到 ,获得积分10
刚刚
baimo完成签到,获得积分10
刚刚
1秒前
1秒前
开放从云完成签到 ,获得积分10
1秒前
2秒前
李爱国应助林新宇采纳,获得10
2秒前
即墨十三完成签到 ,获得积分10
2秒前
2秒前
JASONLIU完成签到,获得积分10
3秒前
3秒前
5秒前
乐一李发布了新的文献求助10
5秒前
5秒前
5秒前
体贴绝音发布了新的文献求助10
5秒前
6秒前
翔国发布了新的文献求助10
6秒前
6秒前
SH发布了新的文献求助10
6秒前
顾袅完成签到,获得积分10
6秒前
上官若男应助狄淇儿采纳,获得10
6秒前
7秒前
7秒前
star发布了新的文献求助10
7秒前
xiaojuan发布了新的文献求助10
7秒前
搞怪如雪完成签到,获得积分10
7秒前
搜集达人应助李梁采纳,获得10
7秒前
8秒前
栗子完成签到,获得积分10
8秒前
8秒前
MizzZeus完成签到,获得积分10
8秒前
8秒前
林新宇完成签到,获得积分10
9秒前
9秒前
日落星野完成签到,获得积分20
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407