Learning to quantify uncertainty in off-target activity for CRISPR guide RNAs

清脆的 生物 引导RNA 基因组编辑 计算机科学 计算生物学 生物信息学 Cas9 骨料(复合) 机器学习 遗传学 基因 材料科学 复合材料
作者
Furkan Özden,Péter Mináry
出处
期刊:Nucleic Acids Research [Oxford University Press]
标识
DOI:10.1093/nar/gkae759
摘要

CRISPR-based genome editing technologies have revolutionised the field of molecular biology, offering unprecedented opportunities for precise genetic manipulation. However, off-target effects remain a significant challenge, potentially leading to unintended consequences and limiting the applicability of CRISPR-based genome editing technologies in clinical settings. Current literature predominantly focuses on point predictions for off-target activity, which may not fully capture the range of possible outcomes and associated risks. Here, we present crispAI, a neural network architecture-based approach for predicting uncertainty estimates for off-target cleavage activity, providing a more comprehensive risk assessment and facilitating improved decision-making in single guide RNA (sgRNA) design. Our approach makes use of the count noise model Zero Inflated Negative Binomial (ZINB) to model the uncertainty in the off-target cleavage activity data. In addition, we present the first-of-its-kind genome-wide sgRNA efficiency score, crispAI-aggregate, enabling prioritization among sgRNAs with similar point aggregate predictions by providing richer information compared to existing aggregate scores. We show that uncertainty estimates of our approach are calibrated and its predictive performance is superior to the state-of-the-art in silico off-target cleavage activity prediction methods. The tool and the trained models are available at https://github.com/furkanozdenn/crispr-offtarget-uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分20
刚刚
hhhhhhh完成签到,获得积分10
刚刚
wsatm发布了新的文献求助10
刚刚
糟糕的面包完成签到,获得积分10
刚刚
曙光完成签到,获得积分10
1秒前
买瓜吗完成签到,获得积分20
1秒前
完美世界应助空白采纳,获得10
1秒前
LX完成签到,获得积分10
1秒前
热情松鼠完成签到,获得积分10
1秒前
平行线发布了新的文献求助10
2秒前
sunphor完成签到 ,获得积分10
2秒前
栗子发布了新的文献求助10
2秒前
Anivia2015完成签到,获得积分10
2秒前
WYang完成签到,获得积分10
2秒前
昌怜烟完成签到,获得积分10
2秒前
153495159应助之之采纳,获得10
2秒前
雪白的雪完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
菠菜应助Cloud采纳,获得100
4秒前
迷路海蓝应助aliang_roy采纳,获得30
4秒前
雨落发布了新的文献求助10
4秒前
领导范儿应助Asma_2104采纳,获得10
5秒前
johnny完成签到,获得积分10
5秒前
6秒前
7秒前
晓晓完成签到 ,获得积分10
7秒前
wsatm完成签到,获得积分10
8秒前
8秒前
9秒前
微光发布了新的文献求助10
9秒前
大天才卡莲博士完成签到,获得积分10
9秒前
lbw完成签到,获得积分10
9秒前
10秒前
行城舟_完成签到 ,获得积分10
10秒前
10秒前
打打应助..采纳,获得10
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151000
求助须知:如何正确求助?哪些是违规求助? 2802506
关于积分的说明 7848292
捐赠科研通 2459791
什么是DOI,文献DOI怎么找? 1309336
科研通“疑难数据库(出版商)”最低求助积分说明 628894
版权声明 601757