Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States

极化(电化学) 脉搏(音乐) 噪音(视频) 分子 物理 材料科学 光电子学 化学 量子力学 电压 计算机科学 物理化学 人工智能 图像(数学)
作者
Zhi‐Zeng Si,Zhen‐Tao Ju,Long‐Fei Ren,Xuepeng Wang,Boris A. Malomed,Chao‐Qing Dai
出处
期刊:Laser & Photonics Reviews [Wiley]
被引量:22
标识
DOI:10.1002/lpor.202401019
摘要

Abstract Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DrSong发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
奕_yinb完成签到 ,获得积分10
2秒前
星辰大海应助白开水采纳,获得10
2秒前
2秒前
麦麦完成签到,获得积分20
2秒前
123456qi发布了新的文献求助10
2秒前
3秒前
3秒前
小新应助烟波钓徒采纳,获得10
3秒前
3秒前
负责吃饭完成签到,获得积分10
3秒前
微渺完成签到,获得积分10
3秒前
睿力完成签到,获得积分10
3秒前
妮妮完成签到,获得积分10
4秒前
2224536完成签到,获得积分10
4秒前
天天快乐应助vivre223采纳,获得10
4秒前
shuiha发布了新的文献求助10
4秒前
4秒前
一一应助零度冰采纳,获得10
5秒前
鱼鱼鱼完成签到,获得积分10
5秒前
5秒前
5秒前
梅竹发布了新的文献求助10
6秒前
万能图书馆应助yiyi采纳,获得10
6秒前
lili完成签到,获得积分10
6秒前
7秒前
侏罗纪世界完成签到,获得积分10
7秒前
infe发布了新的文献求助10
7秒前
奕_yinb关注了科研通微信公众号
8秒前
LGS发布了新的文献求助10
8秒前
rrrrrrrrrrrrrrr完成签到,获得积分20
9秒前
smin发布了新的文献求助10
9秒前
9秒前
无花果应助往不随采纳,获得10
9秒前
10秒前
优雅含灵发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853