A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

分割 乳腺癌 计算机科学 杠杆(统计) 乳腺超声检查 机器学习 人工智能 编码器 深度学习 医学 模式识别(心理学) 癌症 乳腺摄影术 内科学 操作系统
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6840-6853 被引量:4
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫酸奶发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
需要论文应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
luhuitou应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
敬之发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
修辛完成签到 ,获得积分10
2秒前
棉花羊5041发布了新的文献求助10
3秒前
orixero应助Jeremy采纳,获得10
3秒前
史呆芬完成签到,获得积分10
4秒前
fishuae完成签到,获得积分20
4秒前
晨曦夕日完成签到,获得积分10
4秒前
阿白完成签到 ,获得积分10
4秒前
SHPING完成签到,获得积分10
4秒前
liu发布了新的文献求助10
5秒前
芍药完成签到,获得积分10
5秒前
朱志伟完成签到,获得积分10
5秒前
Xia完成签到,获得积分10
5秒前
5秒前
dd完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594