A Multi-Task Transformer with Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

乳腺癌 计算机科学 特征(语言学) 人工智能 变压器 计算机视觉 医学 模式识别(心理学) 癌症 工程类 内科学 电压 哲学 语言学 电气工程
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
澡雪发布了新的文献求助10
刚刚
伶俐绮发布了新的文献求助10
刚刚
安详的自中完成签到,获得积分10
1秒前
shuiliuyuzai完成签到,获得积分10
1秒前
仿生人发布了新的文献求助10
2秒前
2秒前
Sunrising发布了新的文献求助10
3秒前
田様应助淡然的小萱采纳,获得10
3秒前
3秒前
书生发布了新的文献求助10
4秒前
4秒前
5秒前
Wenson发布了新的文献求助10
6秒前
tututu发布了新的文献求助30
6秒前
7秒前
3120221053完成签到,获得积分10
7秒前
8秒前
巧克力蛋仔完成签到 ,获得积分10
10秒前
dabai发布了新的文献求助10
10秒前
rym完成签到 ,获得积分10
10秒前
沉静天思发布了新的文献求助10
10秒前
binz完成签到,获得积分10
10秒前
书生完成签到,获得积分10
11秒前
13秒前
大模型应助澡雪采纳,获得10
13秒前
13秒前
13秒前
16秒前
香蕉觅云应助Emmm采纳,获得10
16秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
我要毕业发布了新的文献求助10
19秒前
wanci应助想学习想得不行采纳,获得10
20秒前
Orange应助Steven采纳,获得10
21秒前
瞬华发布了新的文献求助10
22秒前
SSS完成签到,获得积分10
23秒前
隐形曼青应助无情的匪采纳,获得10
24秒前
CipherSage应助正直的白羊采纳,获得10
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496