亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

分割 乳腺癌 计算机科学 杠杆(统计) 乳腺超声检查 机器学习 人工智能 编码器 深度学习 医学 模式识别(心理学) 癌症 乳腺摄影术 内科学 操作系统
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6840-6853 被引量:4
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alvin完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
11秒前
彭于晏应助ceeray23采纳,获得20
13秒前
盛事不朽完成签到 ,获得积分10
17秒前
打打应助ceeray23采纳,获得20
21秒前
cy0824完成签到 ,获得积分10
22秒前
科研通AI2S应助ceeray23采纳,获得20
27秒前
JamesPei应助ceeray23采纳,获得30
31秒前
爆米花应助ceeray23采纳,获得20
36秒前
DocChen完成签到,获得积分10
41秒前
42秒前
DocChen发布了新的文献求助10
47秒前
faith发布了新的文献求助10
48秒前
丁静完成签到 ,获得积分0
56秒前
lanxinge完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
共享精神应助ceeray23采纳,获得20
1分钟前
我是老大应助ceeray23采纳,获得20
2分钟前
丘比特应助ceeray23采纳,获得20
2分钟前
李健应助ceeray23采纳,获得20
2分钟前
慕青应助ceeray23采纳,获得20
2分钟前
xiaoyuan发布了新的文献求助10
2分钟前
3分钟前
Alisha完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小鹿发布了新的文献求助10
4分钟前
情怀应助小鹿采纳,获得10
4分钟前
Akim应助ceeray23采纳,获得20
4分钟前
trophozoite完成签到 ,获得积分10
4分钟前
juan完成签到 ,获得积分0
4分钟前
丘比特应助ceeray23采纳,获得20
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
shepherd应助ceeray23采纳,获得20
4分钟前
香蕉觅云应助ceeray23采纳,获得20
4分钟前
吴静完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助20
5分钟前
5分钟前
跳跳虎完成签到 ,获得积分10
5分钟前
领导范儿应助光能使者采纳,获得10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771555
捐赠科研通 4613838
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523