A Multi-Task Transformer with Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

乳腺癌 计算机科学 特征(语言学) 人工智能 变压器 计算机视觉 医学 模式识别(心理学) 癌症 工程类 内科学 电压 哲学 语言学 电气工程
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦可完成签到,获得积分10
刚刚
shuangshuang完成签到,获得积分10
刚刚
沐沐1003完成签到,获得积分10
1秒前
拣尽南枝完成签到 ,获得积分10
1秒前
2秒前
ding应助HHEHK采纳,获得10
2秒前
Zzx完成签到,获得积分10
3秒前
Fin2046发布了新的文献求助30
4秒前
炒鸡小将完成签到,获得积分10
4秒前
机智灵薇发布了新的文献求助10
5秒前
5秒前
橙子完成签到 ,获得积分10
6秒前
刻苦的晓蕾完成签到,获得积分10
6秒前
崔志海完成签到,获得积分10
7秒前
7秒前
8秒前
胡须应助祁乐安采纳,获得20
11秒前
刘钱美子完成签到,获得积分10
11秒前
qian完成签到 ,获得积分10
11秒前
李治海发布了新的文献求助10
12秒前
醉眠完成签到 ,获得积分10
12秒前
Fin2046完成签到,获得积分10
12秒前
学不懂数学完成签到,获得积分10
13秒前
莓烦恼完成签到 ,获得积分10
14秒前
15秒前
白江虎完成签到,获得积分10
16秒前
17秒前
阳光的凌雪完成签到 ,获得积分10
18秒前
文艺小馒头完成签到,获得积分10
18秒前
赵赵发布了新的文献求助20
19秒前
橙子发布了新的文献求助10
21秒前
22秒前
Wsyyy完成签到 ,获得积分10
24秒前
24秒前
ganjqly完成签到,获得积分10
24秒前
董惠玲66发布了新的文献求助10
25秒前
g7001完成签到,获得积分10
27秒前
blue发布了新的文献求助10
27秒前
刘铭晨完成签到,获得积分10
27秒前
XYZ完成签到 ,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029