A Multi-Task Transformer with Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

乳腺癌 计算机科学 特征(语言学) 人工智能 变压器 计算机视觉 医学 模式识别(心理学) 癌症 工程类 内科学 电压 哲学 语言学 电气工程
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助喵喵采纳,获得10
刚刚
ZXCVB发布了新的文献求助30
刚刚
Jasper应助苏柏亚采纳,获得10
1秒前
你腿毛有点长完成签到,获得积分10
1秒前
搜集达人应助qi采纳,获得10
1秒前
1秒前
YOMU完成签到,获得积分10
1秒前
1秒前
1秒前
扣1送地狱火完成签到,获得积分10
2秒前
2秒前
科研小子发布了新的文献求助10
2秒前
支尔柳完成签到,获得积分10
3秒前
领导范儿应助ly采纳,获得10
3秒前
3秒前
丁凛完成签到,获得积分10
3秒前
4秒前
茉莉茉莉轰完成签到,获得积分10
4秒前
偷乐发布了新的文献求助10
4秒前
4秒前
5秒前
GG发布了新的文献求助10
5秒前
5秒前
拼搏剑心完成签到 ,获得积分10
5秒前
Aonlyhuang发布了新的文献求助10
5秒前
传奇3应助xuzj采纳,获得30
6秒前
JamesPei应助XHH1994采纳,获得10
6秒前
7秒前
Jojo发布了新的文献求助30
7秒前
Singularity应助芋孟齐采纳,获得10
8秒前
少年梦完成签到,获得积分20
8秒前
8秒前
yydragen应助QH采纳,获得100
8秒前
9秒前
CodeCraft应助背后海亦采纳,获得10
9秒前
Hello应助背后海亦采纳,获得10
9秒前
9秒前
慕青应助背后海亦采纳,获得20
9秒前
斯文败类应助背后海亦采纳,获得10
9秒前
1351567822应助背后海亦采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039