Resilience quantification and recovery strategy simulation for urban underground logistics systems under node and link attacks: A case study of Nanjing city

弹性(材料科学) 风险分析(工程) 中间性中心性 节点(物理) 流量网络 可靠性(半导体) 运输工程 计算机科学 中心性 工程类 业务 物理 结构工程 热力学 数学优化 功率(物理) 数学 组合数学 量子力学
作者
Ying Lu,Qingling Wang,Shi‐Yu Huang,Wenhui Yu,Shuyue Yao
出处
期刊:International Journal of Critical Infrastructure Protection [Elsevier]
卷期号:47: 100704-100704
标识
DOI:10.1016/j.ijcip.2024.100704
摘要

Urban Underground Logistics Systems (UULS) have become an emerging solution to mitigate urban surface traffic congestion, environmental pollution, and surface transport safety risks. However, during the operation of UULS, the use of advanced technologies such as the Internet of Things (IoT) introduces cybersecurity risks to the system. Moreover, severe natural disasters can also cause damage to underground transportation network links. Existing research and planning primarily concentrate on the system design and benefits of UULS, neglecting the system's service level under attack scenarios. This study outlines three representative UULS network prototypes and proposes a resilience quantification method centered on logistics efficiency. It also focuses on comparing the effectiveness of three recovery strategies. These strategies give priority to maximum flow, betweenness centrality, and regional importance, as well as the priority of node and link repairs. The resilience quantification method and recovery strategies are applied in a case study set in Nanjing City. The case study results reveal that the Two-echelon network shows exceptional resilience. Regarding the effectiveness of recovery strategies, the strategy based on maximum flow proves to be the most effective, and focusing on node repair can lead to higher system resilience. Based on these findings, this study offers recommendations to transportation and logistics management decision-makers, focusing on UULS resilience and recovery strategy selection. These recommendations are intended to provide valuable guidance for the planning and design of future UULS, ensuring their resilience and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的含羞草完成签到 ,获得积分10
1秒前
Muuu发布了新的文献求助10
1秒前
仁爱的乐枫完成签到,获得积分10
2秒前
2秒前
金润完成签到,获得积分10
3秒前
ZZ完成签到,获得积分10
3秒前
AteeqBaloch发布了新的文献求助10
4秒前
PaulLao完成签到,获得积分10
4秒前
4秒前
fleee发布了新的文献求助10
4秒前
4秒前
5秒前
Luyao发布了新的文献求助10
5秒前
海派Hi完成签到 ,获得积分10
5秒前
依依完成签到 ,获得积分10
6秒前
李健的小迷弟应助库外采纳,获得10
6秒前
yi完成签到 ,获得积分10
6秒前
kbj发布了新的文献求助10
6秒前
8秒前
佳言2009完成签到,获得积分10
9秒前
汉堡包应助漂亮的初蓝采纳,获得10
9秒前
hohokuz发布了新的文献求助10
10秒前
莫里完成签到,获得积分10
10秒前
zxz发布了新的文献求助10
10秒前
Luyao完成签到,获得积分10
11秒前
11秒前
11秒前
马甲完成签到,获得积分10
11秒前
科研通AI5应助xdf采纳,获得10
11秒前
周周完成签到,获得积分10
11秒前
Holybot完成签到,获得积分10
11秒前
13秒前
只道寻常完成签到,获得积分10
13秒前
fleee完成签到,获得积分10
13秒前
swsx1317发布了新的文献求助10
13秒前
14秒前
雪白涵山完成签到,获得积分20
14秒前
liao完成签到 ,获得积分10
14秒前
hu970发布了新的文献求助30
14秒前
科研小白发布了新的文献求助20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762