Comparing the efficacy of faking warning types in preemployment personality tests: A meta-analysis.

心理学 人格 荟萃分析 应用心理学 成对比较 人格评估量表 五大性格特征 社会心理学 心理干预 欺骗 临床心理学 发展心理学 精神科 医学 内科学
作者
Benjamin Moon,Kabir N. Daljeet,Thomas A. O’Neill,Harley Harwood,Wahaj Awad,Leonid V. Beletski
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:110 (1): 131-147 被引量:3
标识
DOI:10.1037/apl0001224
摘要

Numerous faking warning types have been investigated as interventions that aim to minimize applicant faking in preemployment personality tests. However, studies vary in the types and effectiveness of faking warnings used, personality traits, as well as the use of different recruitment settings and participant samples. In the present study, we advance a theory that classifies faking warning types based on ability, opportunity, and motivation to fake (Tett & Simonet, 2011), which we validated using subject matter expert ratings. Using this framework as a guide, we conducted a random-effects pairwise meta-analysis (k = 34) and a network meta-analysis (k = 36). We used inverse-variance weighting to pool the effect sizes and relied on 80% prediction intervals to evaluate heterogeneity. Overall, faking warnings had a significant, moderate effect in reducing applicant faking (d = 0.31, 95% CI [0.23, 0.39]). Warning types that theoretically targeted ability, motivation, and opportunity to fake (d = 0.36, 95% CI [0.25, 0.47]) were the most effective. Additionally, warnings were least effective in studies using recruitment settings and nonuniversity student samples. However, all effect sizes contained substantial heterogeneity, and all warning types will be ineffective in some contexts. Organizations should be cognizant that warnings alone may not be sufficient to address applicant faking, and future research should explore how their effectiveness varies depending on other contextual factors and applicant characteristics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅斟低唱发布了新的文献求助15
刚刚
火火发布了新的文献求助10
3秒前
科研通AI6应助骆西西采纳,获得10
5秒前
hui完成签到,获得积分10
6秒前
海林完成签到 ,获得积分10
7秒前
lyc完成签到,获得积分10
7秒前
FXL完成签到 ,获得积分10
7秒前
斯文败类应助panyubo采纳,获得10
8秒前
8秒前
8秒前
12138发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
完美世界应助勤奋的擎苍采纳,获得10
10秒前
12秒前
lijiauyi1994发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
wanci应助无情的宛丝采纳,获得10
15秒前
15秒前
15秒前
15秒前
WangXiaoze发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
张佳乐发布了新的文献求助10
19秒前
zhuojiu发布了新的文献求助10
21秒前
lijiauyi1994完成签到,获得积分10
21秒前
22秒前
22秒前
任性蘑菇发布了新的文献求助10
23秒前
single完成签到,获得积分10
23秒前
笨蛋美女完成签到 ,获得积分10
24秒前
Dream完成签到 ,获得积分10
25秒前
25秒前
25秒前
26秒前
Uzma完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716