Comparing the efficacy of faking warning types in preemployment personality tests: A meta-analysis.

心理学 人格 荟萃分析 应用心理学 成对比较 人格评估量表 五大性格特征 社会心理学 心理干预 欺骗 临床心理学 发展心理学 精神科 医学 内科学
作者
Benjamin Moon,Kabir N. Daljeet,Thomas A. O’Neill,Harley Harwood,Wahaj Awad,Leonid V. Beletski
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:110 (1): 131-147 被引量:3
标识
DOI:10.1037/apl0001224
摘要

Numerous faking warning types have been investigated as interventions that aim to minimize applicant faking in preemployment personality tests. However, studies vary in the types and effectiveness of faking warnings used, personality traits, as well as the use of different recruitment settings and participant samples. In the present study, we advance a theory that classifies faking warning types based on ability, opportunity, and motivation to fake (Tett & Simonet, 2011), which we validated using subject matter expert ratings. Using this framework as a guide, we conducted a random-effects pairwise meta-analysis (k = 34) and a network meta-analysis (k = 36). We used inverse-variance weighting to pool the effect sizes and relied on 80% prediction intervals to evaluate heterogeneity. Overall, faking warnings had a significant, moderate effect in reducing applicant faking (d = 0.31, 95% CI [0.23, 0.39]). Warning types that theoretically targeted ability, motivation, and opportunity to fake (d = 0.36, 95% CI [0.25, 0.47]) were the most effective. Additionally, warnings were least effective in studies using recruitment settings and nonuniversity student samples. However, all effect sizes contained substantial heterogeneity, and all warning types will be ineffective in some contexts. Organizations should be cognizant that warnings alone may not be sufficient to address applicant faking, and future research should explore how their effectiveness varies depending on other contextual factors and applicant characteristics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
1秒前
hotwater发布了新的文献求助10
1秒前
科目三应助腾飞采纳,获得10
2秒前
weifengzhong完成签到,获得积分10
2秒前
123发布了新的文献求助10
4秒前
4秒前
展锋发布了新的文献求助10
6秒前
苏远山爱吃西红柿完成签到,获得积分10
6秒前
科研通AI2S应助木木采纳,获得10
6秒前
小蘑菇应助哈哈哈采纳,获得10
7秒前
silence完成签到 ,获得积分10
7秒前
slsdy发布了新的文献求助10
7秒前
Criminology34应助正常采纳,获得10
8秒前
Hey发布了新的文献求助10
9秒前
hhhh完成签到,获得积分10
10秒前
dddyrrrrr完成签到 ,获得积分10
10秒前
tt发布了新的文献求助10
11秒前
L_Gary完成签到 ,获得积分10
11秒前
11秒前
11秒前
Beton_X完成签到,获得积分20
11秒前
11秒前
正常完成签到,获得积分10
12秒前
12秒前
JamesPei应助不爱吃苹果采纳,获得10
13秒前
轻松黄豆完成签到,获得积分10
13秒前
13秒前
田様应助Zz采纳,获得10
14秒前
呆鸥完成签到,获得积分10
15秒前
YH发布了新的文献求助10
15秒前
slsdy完成签到,获得积分10
16秒前
Orange应助隔壁海绵宝宝采纳,获得10
16秒前
16秒前
pterionGao完成签到 ,获得积分10
16秒前
叶子完成签到,获得积分10
16秒前
bidefu发布了新的文献求助10
17秒前
Chenzhs完成签到,获得积分10
18秒前
亓亓发布了新的文献求助10
18秒前
共享精神应助董秋白采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295056
求助须知:如何正确求助?哪些是违规求助? 4444656
关于积分的说明 13834273
捐赠科研通 4328923
什么是DOI,文献DOI怎么找? 2376463
邀请新用户注册赠送积分活动 1371739
关于科研通互助平台的介绍 1336930