Comparing the efficacy of faking warning types in preemployment personality tests: A meta-analysis.

心理学 人格 荟萃分析 应用心理学 成对比较 人格评估量表 五大性格特征 社会心理学 心理干预 欺骗 临床心理学 发展心理学 精神科 医学 内科学
作者
Benjamin Moon,Kabir N. Daljeet,Thomas A. O’Neill,Harley Harwood,Wahaj Awad,Leonid V. Beletski
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:110 (1): 131-147 被引量:3
标识
DOI:10.1037/apl0001224
摘要

Numerous faking warning types have been investigated as interventions that aim to minimize applicant faking in preemployment personality tests. However, studies vary in the types and effectiveness of faking warnings used, personality traits, as well as the use of different recruitment settings and participant samples. In the present study, we advance a theory that classifies faking warning types based on ability, opportunity, and motivation to fake (Tett & Simonet, 2011), which we validated using subject matter expert ratings. Using this framework as a guide, we conducted a random-effects pairwise meta-analysis (k = 34) and a network meta-analysis (k = 36). We used inverse-variance weighting to pool the effect sizes and relied on 80% prediction intervals to evaluate heterogeneity. Overall, faking warnings had a significant, moderate effect in reducing applicant faking (d = 0.31, 95% CI [0.23, 0.39]). Warning types that theoretically targeted ability, motivation, and opportunity to fake (d = 0.36, 95% CI [0.25, 0.47]) were the most effective. Additionally, warnings were least effective in studies using recruitment settings and nonuniversity student samples. However, all effect sizes contained substantial heterogeneity, and all warning types will be ineffective in some contexts. Organizations should be cognizant that warnings alone may not be sufficient to address applicant faking, and future research should explore how their effectiveness varies depending on other contextual factors and applicant characteristics. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助朝暾采纳,获得10
刚刚
1秒前
鸽子发布了新的文献求助10
1秒前
2秒前
黄淮科研小白龙完成签到 ,获得积分10
2秒前
2秒前
瘦瘦青荷完成签到,获得积分10
2秒前
甜甜的觅夏完成签到,获得积分10
2秒前
百里丹珍发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
深情安青应助临界采纳,获得10
3秒前
LW完成签到,获得积分10
3秒前
Mystic发布了新的文献求助10
3秒前
亚婷儿完成签到,获得积分10
4秒前
AQ完成签到,获得积分10
4秒前
YufanZhang发布了新的文献求助10
5秒前
5秒前
迅速的巧曼完成签到 ,获得积分10
5秒前
5秒前
5秒前
专注无声发布了新的文献求助10
6秒前
饱满夏瑶发布了新的文献求助10
6秒前
Pursuit发布了新的文献求助10
6秒前
华仔应助ying采纳,获得10
7秒前
7秒前
解语花发布了新的文献求助10
7秒前
醒醒发布了新的文献求助10
7秒前
浮游应助ldroc采纳,获得10
7秒前
Yang2完成签到,获得积分10
8秒前
beyond发布了新的文献求助10
8秒前
8秒前
Lucas应助Mystic采纳,获得10
9秒前
9秒前
浮游应助金博洋采纳,获得18
9秒前
9秒前
天天快乐应助哈哈王采纳,获得10
10秒前
10秒前
啦啦啦啦啦啦啦完成签到,获得积分10
10秒前
10秒前
呓语完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978