Endowing Three-Dimensional Porous Wood with Hydrophobicity/Superhydrophobicity Based on Binary Silanization

甲基三甲氧基硅烷 材料科学 硅烷化 硅烷 多孔性 表面改性 复合材料 复合数 表面能 化学工程 硅烷 工程类 涂层
作者
Wei Tang,Heng‐Yi Zhang,Dennis W. Hess,Chunmei Xie,Jing Liu,Xijuan Chai,Kaimeng Xu,Lianpeng Zhang,Hui Wan,Linkun Xie
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (33): 44077-44093 被引量:9
标识
DOI:10.1021/acsami.4c09951
摘要

Wood, as a natural biomass material, has long been a research focus. Superhydrophobic modified wood, in particular, has shown great promise in a myriad of engineering applications such as architecture, landscape, and shipbuilding. However, commercial development has encountered significant resistance due to preparation difficulties and sometimes unsatisfactory performance. In this study, hydrophobic/superhydrophobic wood comodified with methyltrimethoxysilane (MTMS) and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDTMS) was fabricated by a one-step sol–gel method that uses an in situ growth process. Low-molecular-weight MTMS was allowed to permeate the three-dimensional porous wood interior. Then, acid–base catalysts were used to regulate the hydrolytic condensation process of MTMS and PFDTMS composite silanes to generate micro/nano hierarchical structures with low surface energy on the wood surface. The physicochemical characteristics of modified wood were investigated and the reaction mechanism established. The modified wood displayed excellent internal hydrophobicity/surface superhydrophobicity, water-moisture resistance, and dimensional stability at low fluorine concentrations. The resulting superhydrophobic surface provided stain resistance, self-cleaning ability, and loading capacity in water while exhibiting good mechanochemical stability; wood mechanical strength was also enhanced. This methodology created a superhydrophobic surface and bulk hydrophobization of wood in one step. Beyond wood, this approach is expected to provide a promising approach for functional modification of other porous composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助LQQ采纳,获得10
1秒前
hhl发布了新的文献求助10
1秒前
1秒前
1秒前
黄则已发布了新的文献求助10
1秒前
2秒前
Laputa发布了新的文献求助10
2秒前
小何发布了新的文献求助10
2秒前
3秒前
3秒前
小蘑菇应助细心健柏采纳,获得10
3秒前
4秒前
Linda完成签到 ,获得积分10
4秒前
zzz发布了新的文献求助10
4秒前
xianyu完成签到,获得积分0
5秒前
5秒前
大龙哥886应助科研Cat采纳,获得10
5秒前
6秒前
斯文败类应助Te采纳,获得10
6秒前
王枫发布了新的文献求助10
6秒前
苹果涵蕾完成签到,获得积分10
6秒前
科研通AI6应助田小班采纳,获得10
6秒前
吴静慧完成签到 ,获得积分10
7秒前
7秒前
蒋若风发布了新的文献求助10
8秒前
buno应助张益发采纳,获得10
8秒前
9秒前
LQQ发布了新的文献求助10
9秒前
轻歌水越发布了新的文献求助10
9秒前
9秒前
Owen应助怕孤独的迎梦采纳,获得10
9秒前
霖尤发布了新的文献求助20
10秒前
10秒前
遇见完成签到,获得积分20
10秒前
尼古拉斯发布了新的文献求助10
11秒前
11秒前
在水一方应助HCT采纳,获得10
12秒前
hhl完成签到,获得积分10
12秒前
12秒前
Eukarya完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836