Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database

计算机科学 水准点(测量) 人工智能 稳健性(进化) 计算生物学 机器学习 生物 基因 遗传学 大地测量学 地理
作者
Yehong Yang,Songfeng Wu,Jie Kong,Yunping Zhu,Jiang-Feng Liu,Juntao Yang
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:281: 104905-104905 被引量:3
标识
DOI:10.1016/j.jprot.2023.104905
摘要

Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰发布了新的文献求助10
3秒前
yuyu发布了新的文献求助10
4秒前
Akim应助虚心谷梦采纳,获得10
5秒前
6秒前
6秒前
6秒前
Daidai发布了新的文献求助10
7秒前
李健的小迷弟应助uusmile采纳,获得10
8秒前
9秒前
11秒前
东东发布了新的文献求助10
12秒前
Lucas应助cheese采纳,获得10
12秒前
13秒前
13秒前
Haisne发布了新的文献求助10
13秒前
星辰完成签到,获得积分10
15秒前
15秒前
XZY发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助SmuA采纳,获得30
17秒前
rocky15发布了新的文献求助10
17秒前
Y20完成签到,获得积分10
17秒前
虚心谷梦发布了新的文献求助10
17秒前
18秒前
彭于晏应助彩色的忆丹采纳,获得50
18秒前
18秒前
情怀应助沙漠西瓜皮采纳,获得10
21秒前
21秒前
21秒前
22秒前
xx发布了新的文献求助10
22秒前
22秒前
SciGPT应助英俊的胜采纳,获得10
23秒前
HearbaRtNDY完成签到,获得积分10
24秒前
不配.应助Clover04采纳,获得10
26秒前
26秒前
花开富贵完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268118
求助须知:如何正确求助?哪些是违规求助? 2907500
关于积分的说明 8342520
捐赠科研通 2578037
什么是DOI,文献DOI怎么找? 1401624
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634173