Structure-based pharmacophore modeling 2. Developing a novel framework for structure-based pharmacophore model generation and selection

药效团 计算生物学 G蛋白偶联受体 药物发现 化学 计算机科学 数量结构-活动关系 选型 人工智能 机器学习 立体化学 受体 生物 生物化学
作者
Gregory L. Szwabowski,Bernie J. Daigle,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:122: 108488-108488 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108488
摘要

Pharmacophore models are three-dimensional arrangements of molecular features required for biological activity that are used in ligand identification efforts for many biological targets, including G protein-coupled receptors (GPCR). Though GPCR are integral membrane proteins of considerable interest as targets for drug development, many of these receptors lack known ligands or experimentally determined structures necessary for ligand- or structure-based pharmacophore model generation, respectively. Thus, we here present a structure-based pharmacophore modeling approach that uses fragments placed with Multiple Copy Simultaneous Search (MCSS) to generate high-performing pharmacophore models in the context of experimentally determined, as well as modeled GPCR structures. Moreover, we have addressed the oft-neglected topic of pharmacophore model selection via development of a cluster-then-predict machine learning workflow. Herein score-based pharmacophore models were generated in experimentally determined and modeled structures of 13 class A GPCR and resulted in pharmacophore models exhibiting high enrichment factors when used to search a database containing 569 class A GPCR ligands. In addition, classification of pharmacophore models with the best performing cluster-then-predict logistic regression classifier resulted in positive predictive values (PPV) of 0.88 and 0.76 for selecting high enrichment pharmacophore models from among those generated in experimentally determined and modeled structures, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助无语的如天采纳,获得10
2秒前
俊逸香岚完成签到,获得积分10
2秒前
3秒前
Shine完成签到 ,获得积分10
3秒前
白木发布了新的文献求助10
4秒前
李健应助20010采纳,获得10
5秒前
5秒前
小蘑菇应助火焰迷踪采纳,获得10
5秒前
kassidy完成签到,获得积分10
6秒前
希望天下0贩的0应助ZZZ采纳,获得10
6秒前
坦率灵槐应助周星星采纳,获得10
7秒前
yehata完成签到,获得积分10
7秒前
fendy应助星辰采纳,获得30
7秒前
7秒前
7秒前
7秒前
鲁丁丁发布了新的文献求助10
10秒前
Shellbeaze发布了新的文献求助10
11秒前
ding应助俏皮面包采纳,获得10
11秒前
11秒前
等待黎明发布了新的文献求助10
12秒前
12秒前
麦乐提完成签到,获得积分10
12秒前
田様应助ROOOOOK采纳,获得10
13秒前
坚守初心完成签到,获得积分10
13秒前
cjj发布了新的文献求助10
13秒前
14秒前
20010完成签到,获得积分10
14秒前
15秒前
BINGBING1230发布了新的文献求助10
15秒前
15秒前
15秒前
小杭76应助精明凡雁采纳,获得10
16秒前
TIAN发布了新的文献求助10
16秒前
范范发布了新的文献求助10
17秒前
本之上课发布了新的文献求助10
19秒前
19秒前
19秒前
微垣发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021