Structure-based pharmacophore modeling 2. Developing a novel framework for structure-based pharmacophore model generation and selection

药效团 计算生物学 G蛋白偶联受体 药物发现 化学 计算机科学 数量结构-活动关系 选型 人工智能 机器学习 立体化学 受体 生物 生物化学
作者
Gregory L. Szwabowski,Bernie J. Daigle,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:122: 108488-108488 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108488
摘要

Pharmacophore models are three-dimensional arrangements of molecular features required for biological activity that are used in ligand identification efforts for many biological targets, including G protein-coupled receptors (GPCR). Though GPCR are integral membrane proteins of considerable interest as targets for drug development, many of these receptors lack known ligands or experimentally determined structures necessary for ligand- or structure-based pharmacophore model generation, respectively. Thus, we here present a structure-based pharmacophore modeling approach that uses fragments placed with Multiple Copy Simultaneous Search (MCSS) to generate high-performing pharmacophore models in the context of experimentally determined, as well as modeled GPCR structures. Moreover, we have addressed the oft-neglected topic of pharmacophore model selection via development of a cluster-then-predict machine learning workflow. Herein score-based pharmacophore models were generated in experimentally determined and modeled structures of 13 class A GPCR and resulted in pharmacophore models exhibiting high enrichment factors when used to search a database containing 569 class A GPCR ligands. In addition, classification of pharmacophore models with the best performing cluster-then-predict logistic regression classifier resulted in positive predictive values (PPV) of 0.88 and 0.76 for selecting high enrichment pharmacophore models from among those generated in experimentally determined and modeled structures, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dddd完成签到,获得积分20
1秒前
冉冉发布了新的文献求助10
1秒前
ggg发布了新的文献求助10
2秒前
Oreki发布了新的文献求助10
3秒前
5秒前
谢大喵发布了新的文献求助30
6秒前
奋斗小蜜蜂完成签到,获得积分10
6秒前
chenzihao发布了新的文献求助10
6秒前
7秒前
7秒前
秀丽雁风完成签到,获得积分20
7秒前
chuanxue完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
爱喝水发布了新的文献求助10
10秒前
完美世界应助522采纳,获得50
12秒前
sibia完成签到,获得积分10
12秒前
大个应助简7采纳,获得30
13秒前
柴胡发布了新的文献求助10
13秒前
13秒前
上官若男应助hd采纳,获得10
14秒前
chuanxue发布了新的文献求助30
14秒前
whandzxl发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助30
15秒前
慕青应助爱喝水采纳,获得10
16秒前
17秒前
wxx完成签到,获得积分10
18秒前
19秒前
Wang完成签到,获得积分10
19秒前
chenzihao完成签到,获得积分20
20秒前
司藤完成签到 ,获得积分10
22秒前
22秒前
物语完成签到,获得积分20
22秒前
哟哟哟发布了新的文献求助10
23秒前
浮游应助Retromer采纳,获得10
23秒前
玉佩完成签到 ,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955