Structure-based pharmacophore modeling 2. Developing a novel framework for structure-based pharmacophore model generation and selection

药效团 计算生物学 G蛋白偶联受体 药物发现 化学 计算机科学 数量结构-活动关系 选型 人工智能 机器学习 立体化学 受体 生物 生物化学
作者
Gregory L. Szwabowski,Bernie J. Daigle,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:122: 108488-108488 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108488
摘要

Pharmacophore models are three-dimensional arrangements of molecular features required for biological activity that are used in ligand identification efforts for many biological targets, including G protein-coupled receptors (GPCR). Though GPCR are integral membrane proteins of considerable interest as targets for drug development, many of these receptors lack known ligands or experimentally determined structures necessary for ligand- or structure-based pharmacophore model generation, respectively. Thus, we here present a structure-based pharmacophore modeling approach that uses fragments placed with Multiple Copy Simultaneous Search (MCSS) to generate high-performing pharmacophore models in the context of experimentally determined, as well as modeled GPCR structures. Moreover, we have addressed the oft-neglected topic of pharmacophore model selection via development of a cluster-then-predict machine learning workflow. Herein score-based pharmacophore models were generated in experimentally determined and modeled structures of 13 class A GPCR and resulted in pharmacophore models exhibiting high enrichment factors when used to search a database containing 569 class A GPCR ligands. In addition, classification of pharmacophore models with the best performing cluster-then-predict logistic regression classifier resulted in positive predictive values (PPV) of 0.88 and 0.76 for selecting high enrichment pharmacophore models from among those generated in experimentally determined and modeled structures, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助方意采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
酒剑仙完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
2秒前
Ari_Kun完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
sevenhill应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
星辰大海应助酱子采纳,获得10
3秒前
3秒前
3秒前
斧王应助儒雅的山河采纳,获得10
3秒前
3秒前
小兔子乖乖完成签到 ,获得积分10
4秒前
lucas发布了新的文献求助10
4秒前
Ava应助yang采纳,获得10
5秒前
5秒前
einsmay完成签到 ,获得积分10
5秒前
开放念云发布了新的文献求助10
5秒前
陈七发布了新的文献求助10
5秒前
文静千凡完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794