Structure-based pharmacophore modeling 2. Developing a novel framework for structure-based pharmacophore model generation and selection

药效团 计算生物学 G蛋白偶联受体 药物发现 化学 计算机科学 数量结构-活动关系 选型 人工智能 机器学习 立体化学 受体 生物 生物化学
作者
Gregory L. Szwabowski,Bernie J. Daigle,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:122: 108488-108488 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108488
摘要

Pharmacophore models are three-dimensional arrangements of molecular features required for biological activity that are used in ligand identification efforts for many biological targets, including G protein-coupled receptors (GPCR). Though GPCR are integral membrane proteins of considerable interest as targets for drug development, many of these receptors lack known ligands or experimentally determined structures necessary for ligand- or structure-based pharmacophore model generation, respectively. Thus, we here present a structure-based pharmacophore modeling approach that uses fragments placed with Multiple Copy Simultaneous Search (MCSS) to generate high-performing pharmacophore models in the context of experimentally determined, as well as modeled GPCR structures. Moreover, we have addressed the oft-neglected topic of pharmacophore model selection via development of a cluster-then-predict machine learning workflow. Herein score-based pharmacophore models were generated in experimentally determined and modeled structures of 13 class A GPCR and resulted in pharmacophore models exhibiting high enrichment factors when used to search a database containing 569 class A GPCR ligands. In addition, classification of pharmacophore models with the best performing cluster-then-predict logistic regression classifier resulted in positive predictive values (PPV) of 0.88 and 0.76 for selecting high enrichment pharmacophore models from among those generated in experimentally determined and modeled structures, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu920302发布了新的文献求助10
刚刚
好运旺旺发布了新的文献求助10
1秒前
1秒前
木木完成签到,获得积分10
2秒前
华仔应助芳芳子采纳,获得10
2秒前
小胡完成签到,获得积分20
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
瞬间完成签到 ,获得积分10
3秒前
3秒前
文右三完成签到,获得积分10
4秒前
4秒前
赘婿应助啦啦啦采纳,获得10
4秒前
姚盈盈发布了新的文献求助10
4秒前
mgr应助文件撤销了驳回
4秒前
5秒前
酷波er应助cm采纳,获得10
6秒前
FashionBoy应助。.。采纳,获得10
6秒前
6秒前
含羞草发布了新的文献求助80
7秒前
捌柒陆发布了新的文献求助10
8秒前
Jasper应助YuLu采纳,获得10
8秒前
poker发布了新的文献求助10
8秒前
CodeCraft应助LMH采纳,获得10
9秒前
123发布了新的文献求助10
10秒前
10秒前
10秒前
YLL完成签到,获得积分10
10秒前
抱水完成签到,获得积分10
10秒前
无法挽留发布了新的文献求助10
11秒前
斯文败类应助Liu920302采纳,获得10
11秒前
11秒前
12秒前
wiky完成签到 ,获得积分10
12秒前
13秒前
彭于晏应助啦啦啦采纳,获得10
13秒前
白子双发布了新的文献求助10
13秒前
李爱国应助shangqinwang采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718