Accelerated discovery of high-performance Al-Si-Mg-Sc casting alloys by integrating active learning with high-throughput CALPHAD calculations

灰烬 共晶体系 材料科学 微观结构 铸造 合金 冶金 工艺工程 相图 相(物质) 工程类 化学 有机化学
作者
Jianbao Gao,Jue Zhong,Guangchen Liu,Shaoji Zhang,Jiali Zhang,Zuming Liu,Bo Song,Lijun Zhang
出处
期刊:Science and Technology of Advanced Materials [Informa]
卷期号:24 (1) 被引量:1
标识
DOI:10.1080/14686996.2023.2196242
摘要

Scandium is the best alloying element to improve the mechanical properties of industrial Al-Si-Mg casting alloys. Most literature reports devote to exploring/designing optimal Sc additions in different commercial Al-Si-Mg casting alloys with well-defined compositions. However, no attempt to optimize the contents of Si, Mg, and Sc has been made due to the great challenge of simultaneous screening in high-dimensional composition space with limited experimental data. In this paper, a novel alloy design strategy was proposed and successfully applied to accelerate the discovery of hypoeutectic Al-Si-Mg-Sc casting alloys over high-dimensional composition space. Firstly, high-throughput CALculation of PHAse Diagrams (CALPHAD) solidification simulations of ocean of hypoeutectic Al-Si-Mg-Sc casting alloys over a wide composition range were performed to establish the quantitative relation ‘composition-process-microstructure’. Secondly, the relation ‘microstructure-mechanical properties’ of Al-Si-Mg-Sc hypoeutectic casting alloys was acquired using the active learning technique supported by key experiments designed by CALPHAD and Bayesian optimization samplings. After a benchmark in A356-xSc alloys, such a strategy was utilized to design the high-performance hypoeutectic Al-xSi-yMg alloys with optimal Sc additions that were later experimentally validated. Finally, the present strategy was successfully extended to screen the optimal contents of Si, Mg, and Sc over high-dimensional hypoeutectic Al-xSi-yMg-zSc composition space. It is anticipated that the proposed strategy integrating active learning with high-throughput CALPHAD simulations and key experiments should be generally applicable to the efficient design of high-performance multi-component materials over high-dimensional composition space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yishai_Song应助Noah采纳,获得10
1秒前
2秒前
Yina完成签到 ,获得积分10
5秒前
专注的代萱完成签到,获得积分20
6秒前
星宿关注了科研通微信公众号
7秒前
小谢发布了新的文献求助10
7秒前
天天快乐应助董咚咚采纳,获得10
8秒前
饱满金毛发布了新的文献求助20
9秒前
rrw完成签到 ,获得积分10
10秒前
无敌大流流完成签到,获得积分10
10秒前
子明完成签到 ,获得积分10
11秒前
11秒前
夏蓉完成签到,获得积分10
12秒前
13秒前
14秒前
guan发布了新的文献求助10
18秒前
土娃子发布了新的文献求助10
18秒前
追寻的安南完成签到 ,获得积分10
19秒前
zeng5288发布了新的文献求助50
19秒前
万能图书馆应助饱满金毛采纳,获得10
21秒前
彭于晏应助冲锋的大头菜采纳,获得10
22秒前
23秒前
23秒前
李白发布了新的文献求助10
23秒前
25秒前
闪闪尔白发布了新的文献求助10
25秒前
浮三白完成签到,获得积分10
28秒前
董咚咚发布了新的文献求助10
30秒前
30秒前
biofresh完成签到,获得积分10
31秒前
小龚完成签到 ,获得积分10
33秒前
婷婷应助Solar energy采纳,获得10
33秒前
小马甲应助alhn采纳,获得10
36秒前
传奇3应助笑面客采纳,获得10
39秒前
编织第八大洲完成签到,获得积分10
39秒前
39秒前
温婉的白凡完成签到 ,获得积分10
40秒前
43秒前
潇洒自由基完成签到 ,获得积分10
44秒前
bkagyin应助boldhammer采纳,获得10
46秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234