Two decades of financial statement fraud detection literature review; combination of bibliometric analysis and topic modeling approach

潜在Dirichlet分配 主题模型 计算机科学 聚类分析 领域(数学) 数据科学 等级制度 文献计量学 系统回顾 财务报表 管理科学 人工智能 会计 数据挖掘 政治学 业务 工程类 数学 审计 梅德林 纯数学 法学
作者
Milad Soltani,Alexios Kythreotis,Arash Roshanpoor
出处
期刊:Journal of Financial Crime [Emerald (MCB UP)]
卷期号:30 (5): 1367-1388 被引量:15
标识
DOI:10.1108/jfc-09-2022-0227
摘要

Purpose The emergence of machine learning has opened a new way for researchers. It allows them to supplement the traditional manual methods for conducting a literature review and turning it into smart literature. This study aims to present a framework for incorporating machine learning into financial statement fraud (FSF) literature analysis. This framework facilitates the analysis of a large amount of literature to show the trend of the field and identify the most productive authors, journals and potential areas for future research. Design/methodology/approach In this study, a framework was introduced that merges bibliometric analysis techniques such as word frequency, co-word analysis and coauthorship analysis with the Latent Dirichlet Allocation topic modeling approach. This framework was used to uncover subtopics from 20 years of financial fraud research articles. Furthermore, the hierarchical clustering method was used on selected subtopics to demonstrate the primary contexts in the literature on FSF. Findings This study has contributed to the literature in two ways. First, this study has determined the top journals, articles, countries and keywords based on various bibliometric metrics. Second, using topic modeling and then hierarchy clustering, this study demonstrates the four primary contexts in FSF detection. Research limitations/implications In this study, the authors tried to comprehensively view the studies related to financial fraud conducted over two decades. However, this research has limitations that can be an opportunity for future researchers. The first limitation is due to language bias. This study has focused on English language articles, so it is suggested that other researchers consider other languages as well. The second limitation is caused by citation bias. In this study, the authors tried to show the top articles based on the citation criteria. However, judging based on citation alone can be misleading. Therefore, this study suggests that the researchers consider other measures to check the citation quality and assess the studies’ precision by applying meta-analysis. Originality/value Despite the popularity of bibliometric analysis and topic modeling, there have been limited efforts to use machine learning for literature review. This novel approach of using hierarchical clustering on topic modeling results enable us to uncover four primary contexts. Furthermore, this method allowed us to show the keywords of each context and highlight significant articles within each context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剁椒鱼头完成签到 ,获得积分10
1秒前
张奕冰完成签到,获得积分10
1秒前
新雨完成签到 ,获得积分10
2秒前
123456发布了新的文献求助10
3秒前
tienslord完成签到,获得积分10
3秒前
3秒前
领导范儿应助小蜗牛采纳,获得10
3秒前
天天快乐应助纯真的冰蓝采纳,获得10
4秒前
风巽雷震之歌完成签到,获得积分10
4秒前
4秒前
淡定鸿涛发布了新的文献求助10
6秒前
苦哈哈发布了新的文献求助10
7秒前
7秒前
xie老板完成签到,获得积分10
7秒前
都是完成签到,获得积分10
8秒前
9秒前
孙星完成签到,获得积分10
9秒前
10秒前
染东完成签到,获得积分10
10秒前
彦祖完成签到,获得积分10
11秒前
淡定鸿涛完成签到,获得积分10
11秒前
xie老板发布了新的文献求助10
11秒前
糊涂涂完成签到 ,获得积分10
12秒前
12秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
14秒前
Suzzne发布了新的文献求助10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
yanjun_j应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得80
14秒前
14秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847