Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network

TRIPS体系结构 邻接表 图形 计算机科学 邻接矩阵 运筹学 理论计算机科学 数学 算法 并行计算
作者
Chunyan Shuai,Xiaoqi Zhang,Yuxiang Wang,Mingwei He,Fang Yang,Xu Geng
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 121-136 被引量:9
标识
DOI:10.1109/mits.2023.3244935
摘要

Online car-hailing has become an indispensable transportation means for residents. The short-term origin and destination (OD) prediction of online car-hailing trips is conducive to understanding the inflow and outflow of online car-hailing trips in a region and provides data support for the delivery and scheduling of vehicles. Accordingly, this article takes the data of car-hailing trips in the central area of Haikou, China, as the research data; makes an in-depth analysis of the regularities of car-hailing trips; and divides the central area of Haikou into 84 grids with a length of 3 km. This article constructs three adjacency matrices, Am01, Sam, and Amn, to reflect the complex spatial relationships of the OD matrixes of online car-hailing from different perspectives. Then, a model, based on the graph convolutional network (GCN) and gated recurrent unit, denoted as the temporal GCN ( T-GCN ), is introduced for the grid-based short-term OD prediction. The case study in Haikou shows that T-GCNs based on the three adjacency matrices are better than other models, wherein the Amn-based T-GCN is more consistent with the OD flows’ spatial relationship, achieves the best prediction performance, and shows that there exists a proportional relationship between flows on different OD pairs. The application of the research results is beneficial for the car-hailing platform to perform the dynamic scheduling of vehicles in advance, further improving the operating efficiency and reducing the waiting time of passengers so as to effectively alleviate the problem of the imbalance between the supply and demand of online car-hailing travel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒完成签到 ,获得积分10
刚刚
shame完成签到 ,获得积分10
3秒前
one完成签到 ,获得积分10
3秒前
优雅的帅哥完成签到 ,获得积分10
3秒前
5秒前
哎嘿应助科研通管家采纳,获得10
6秒前
梓泽丘墟应助科研通管家采纳,获得20
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
顾矜应助科研通管家采纳,获得10
7秒前
哎嘿应助科研通管家采纳,获得10
7秒前
哎嘿应助科研通管家采纳,获得10
7秒前
无奈以南完成签到 ,获得积分10
9秒前
英俊的含蕾完成签到 ,获得积分10
9秒前
哇咔咔完成签到 ,获得积分10
10秒前
开朗小鸽子完成签到 ,获得积分10
11秒前
隐形曼青应助1459采纳,获得10
12秒前
劳资懒得起网名完成签到,获得积分10
13秒前
www完成签到,获得积分10
13秒前
huangxiaoniu完成签到,获得积分10
17秒前
任风完成签到,获得积分10
18秒前
ZONG完成签到,获得积分10
19秒前
nanfeng完成签到 ,获得积分10
19秒前
拼搏尔风完成签到,获得积分10
25秒前
Hello应助duonicola采纳,获得10
25秒前
Zzz完成签到,获得积分10
28秒前
爱静静应助晴栀采纳,获得10
29秒前
Amancio118完成签到 ,获得积分10
31秒前
eee完成签到,获得积分10
31秒前
TAA66完成签到,获得积分10
31秒前
bobochi完成签到 ,获得积分10
32秒前
Nan完成签到,获得积分10
32秒前
梓泽丘墟应助迅速的寻绿采纳,获得20
32秒前
李爱国应助Viva采纳,获得10
37秒前
XH完成签到,获得积分10
42秒前
无味完成签到,获得积分10
44秒前
冬雪完成签到 ,获得积分10
44秒前
46秒前
myg123完成签到 ,获得积分10
46秒前
坦率的惊蛰完成签到,获得积分10
47秒前
JasVe完成签到 ,获得积分10
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155