Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network

TRIPS体系结构 邻接表 图形 计算机科学 邻接矩阵 运筹学 理论计算机科学 数学 算法 并行计算
作者
Chunyan Shuai,Xiaoqi Zhang,Yuxiang Wang,Mingwei He,Fang Yang,Xu Geng
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 121-136 被引量:9
标识
DOI:10.1109/mits.2023.3244935
摘要

Online car-hailing has become an indispensable transportation means for residents. The short-term origin and destination (OD) prediction of online car-hailing trips is conducive to understanding the inflow and outflow of online car-hailing trips in a region and provides data support for the delivery and scheduling of vehicles. Accordingly, this article takes the data of car-hailing trips in the central area of Haikou, China, as the research data; makes an in-depth analysis of the regularities of car-hailing trips; and divides the central area of Haikou into 84 grids with a length of 3 km. This article constructs three adjacency matrices, Am01, Sam, and Amn, to reflect the complex spatial relationships of the OD matrixes of online car-hailing from different perspectives. Then, a model, based on the graph convolutional network (GCN) and gated recurrent unit, denoted as the temporal GCN ( T-GCN ), is introduced for the grid-based short-term OD prediction. The case study in Haikou shows that T-GCNs based on the three adjacency matrices are better than other models, wherein the Amn-based T-GCN is more consistent with the OD flows’ spatial relationship, achieves the best prediction performance, and shows that there exists a proportional relationship between flows on different OD pairs. The application of the research results is beneficial for the car-hailing platform to perform the dynamic scheduling of vehicles in advance, further improving the operating efficiency and reducing the waiting time of passengers so as to effectively alleviate the problem of the imbalance between the supply and demand of online car-hailing travel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
阿双完成签到 ,获得积分20
2秒前
2秒前
enen发布了新的文献求助30
2秒前
am关闭了am文献求助
3秒前
3秒前
3秒前
两张发布了新的文献求助10
3秒前
完美世界应助axt采纳,获得10
3秒前
3秒前
3秒前
realtimes发布了新的文献求助10
4秒前
5秒前
twinkle发布了新的文献求助10
5秒前
邓桂灿发布了新的文献求助20
5秒前
led完成签到,获得积分10
6秒前
油条完成签到,获得积分10
6秒前
香风智乃完成签到 ,获得积分10
6秒前
6秒前
iperper发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
忧郁平蝶发布了新的文献求助10
7秒前
研友_V8RB68完成签到,获得积分10
8秒前
潘嫄发布了新的文献求助10
8秒前
8秒前
整齐思天发布了新的文献求助10
8秒前
大天使完成签到 ,获得积分10
9秒前
乐乐应助雪白的山雁采纳,获得10
9秒前
10秒前
10秒前
10秒前
lily发布了新的文献求助10
11秒前
axt完成签到,获得积分10
11秒前
11秒前
11秒前
李家人应助xuexi采纳,获得20
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298