Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network

TRIPS体系结构 邻接表 图形 计算机科学 邻接矩阵 运筹学 理论计算机科学 数学 算法 并行计算
作者
Chunyan Shuai,Xiaoqi Zhang,Yuxiang Wang,Mingwei He,Fang Yang,Xu Geng
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 121-136 被引量:9
标识
DOI:10.1109/mits.2023.3244935
摘要

Online car-hailing has become an indispensable transportation means for residents. The short-term origin and destination (OD) prediction of online car-hailing trips is conducive to understanding the inflow and outflow of online car-hailing trips in a region and provides data support for the delivery and scheduling of vehicles. Accordingly, this article takes the data of car-hailing trips in the central area of Haikou, China, as the research data; makes an in-depth analysis of the regularities of car-hailing trips; and divides the central area of Haikou into 84 grids with a length of 3 km. This article constructs three adjacency matrices, Am01, Sam, and Amn, to reflect the complex spatial relationships of the OD matrixes of online car-hailing from different perspectives. Then, a model, based on the graph convolutional network (GCN) and gated recurrent unit, denoted as the temporal GCN ( T-GCN ), is introduced for the grid-based short-term OD prediction. The case study in Haikou shows that T-GCNs based on the three adjacency matrices are better than other models, wherein the Amn-based T-GCN is more consistent with the OD flows’ spatial relationship, achieves the best prediction performance, and shows that there exists a proportional relationship between flows on different OD pairs. The application of the research results is beneficial for the car-hailing platform to perform the dynamic scheduling of vehicles in advance, further improving the operating efficiency and reducing the waiting time of passengers so as to effectively alleviate the problem of the imbalance between the supply and demand of online car-hailing travel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何佳完成签到,获得积分10
刚刚
烟花应助coco采纳,获得10
刚刚
小晶完成签到,获得积分10
刚刚
zimablue完成签到,获得积分10
1秒前
慕青应助范先生采纳,获得10
1秒前
zzz完成签到,获得积分10
2秒前
3秒前
海盗船长完成签到,获得积分10
3秒前
等待寄云完成签到 ,获得积分10
3秒前
酷波er应助王冉冉采纳,获得10
4秒前
lcjynwe完成签到,获得积分10
5秒前
新奇完成签到 ,获得积分10
5秒前
Misty_发布了新的文献求助10
5秒前
iNk应助不会取名字采纳,获得20
5秒前
Orange应助Hannes采纳,获得10
5秒前
7秒前
多多少少忖测的情完成签到,获得积分10
7秒前
小马甲应助lx采纳,获得10
7秒前
8秒前
阔达冰兰发布了新的文献求助10
8秒前
GAO完成签到,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
9秒前
9秒前
奋斗冬萱完成签到,获得积分10
9秒前
康园完成签到,获得积分10
10秒前
活泼的面包完成签到,获得积分10
12秒前
123456完成签到,获得积分10
13秒前
重要谷冬完成签到,获得积分10
13秒前
深情丸子发布了新的文献求助10
13秒前
13秒前
杰瑞完成签到,获得积分10
15秒前
15秒前
ding应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
fang应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
李小鑫吖发布了新的文献求助10
16秒前
ding应助科研通管家采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048