Online Car-Hailing Origin-Destination Forecast Based on a Temporal Graph Convolutional Network

TRIPS体系结构 邻接表 图形 计算机科学 邻接矩阵 运筹学 理论计算机科学 数学 算法 并行计算
作者
Chunyan Shuai,Xiaoqi Zhang,Yuxiang Wang,Mingwei He,Fang Yang,Xu Geng
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 121-136 被引量:9
标识
DOI:10.1109/mits.2023.3244935
摘要

Online car-hailing has become an indispensable transportation means for residents. The short-term origin and destination (OD) prediction of online car-hailing trips is conducive to understanding the inflow and outflow of online car-hailing trips in a region and provides data support for the delivery and scheduling of vehicles. Accordingly, this article takes the data of car-hailing trips in the central area of Haikou, China, as the research data; makes an in-depth analysis of the regularities of car-hailing trips; and divides the central area of Haikou into 84 grids with a length of 3 km. This article constructs three adjacency matrices, Am01, Sam, and Amn, to reflect the complex spatial relationships of the OD matrixes of online car-hailing from different perspectives. Then, a model, based on the graph convolutional network (GCN) and gated recurrent unit, denoted as the temporal GCN ( T-GCN ), is introduced for the grid-based short-term OD prediction. The case study in Haikou shows that T-GCNs based on the three adjacency matrices are better than other models, wherein the Amn-based T-GCN is more consistent with the OD flows’ spatial relationship, achieves the best prediction performance, and shows that there exists a proportional relationship between flows on different OD pairs. The application of the research results is beneficial for the car-hailing platform to perform the dynamic scheduling of vehicles in advance, further improving the operating efficiency and reducing the waiting time of passengers so as to effectively alleviate the problem of the imbalance between the supply and demand of online car-hailing travel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的跳跳糖应助猪猪hero采纳,获得10
刚刚
Hello应助楚珊珊采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
香蕉觅云应助达奚东权采纳,获得10
3秒前
3秒前
QXS完成签到 ,获得积分10
3秒前
聪慧百招发布了新的文献求助10
4秒前
ubiqutin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
day发布了新的文献求助10
6秒前
咩咩羊发布了新的文献求助10
7秒前
7秒前
烦人精完成签到,获得积分10
7秒前
hilbet完成签到,获得积分10
8秒前
南风发布了新的文献求助10
8秒前
嗯哼应助甜美静白采纳,获得10
9秒前
10秒前
ubiqutin完成签到,获得积分20
10秒前
11秒前
认真的小丸子完成签到,获得积分10
11秒前
DezhiShi发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
XS_QI完成签到 ,获得积分10
13秒前
田様应助桉豆采纳,获得10
14秒前
杨佳睿发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助150
16秒前
17秒前
hilbet发布了新的文献求助10
17秒前
17秒前
小牛马完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069273
求助须知:如何正确求助?哪些是违规求助? 4290651
关于积分的说明 13368489
捐赠科研通 4110788
什么是DOI,文献DOI怎么找? 2251058
邀请新用户注册赠送积分活动 1256292
关于科研通互助平台的介绍 1188805