量子点
材料科学
光电子学
红外线的
光电探测器
量子效率
能量转换效率
纳米技术
光学
物理
作者
Yang Liu,Yiyuan Gao,Qian Yang,Xu Gao,Xingyu Zhou,Guozheng Shi,Xingyi Lyu,Hao Wu,Jun Liu,Shiwen Fang,Muhammad Ullah,Leliang Song,Kunyuan Lu,Muhan Cao,Qiao Zhang,Tao Li,Jianlong Xu,Sui‐Dong Wang,Zeke Liu,Wanli Ma
标识
DOI:10.1002/anie.202300396
摘要
PbS quantum dots (QDs) are promising building blocks for solution-processed short-wavelength infrared (SWIR) devices. The recently developed direct synthesis of semi-conductive PbS QD inks has substantially simplified the preparation processing and reduced the material cost, while facing the challenge to synthesize large-size QDs with absorption covering the SWIR region. Herein, we for the first time realize a low-cost, scalable synthesis of SWIR PbS QD inks after an extensive investigation of the reaction kinetics. Finally, based on these PbS SWIR QD inks, the solar cell demonstrates a record-high power conversion efficiency (PCE) of 1.44 % through an 1100 nm cutoff silicon filter and the photodetector device shows a low dark current density of 2×10-6 A cm-2 at -0.8 V reverse bias with a high external quantum efficiency (EQE) of 70 % at ≈1300 nm. Our results realize the direct synthesis of low-cost and scalable SWIR QD inks and may accelerate the industrialization of consumer SWIR technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI