材料科学
导电体
法拉第效率
碳纳米管
电化学
电极
化学工程
膜
纳米技术
制作
电催化剂
聚四氟乙烯
复合材料
化学
物理化学
病理
工程类
替代医学
医学
生物化学
作者
Yunxiang Li,Zhihao Pei,Deyan Luan,Xiong Wen Lou
标识
DOI:10.1002/anie.202302128
摘要
Gas-liquid-solid triple-phase interfaces (TPI) are essential for promoting electrochemical CO2 reduction, but it remains challenging to maximize their efficiency while integrating other desirable properties conducive to electrocatalysis. Herein, we report the elaborate design and fabrication of a superhydrophobic, conductive, and hierarchical wire membrane in which core-shell CuO nanospheres, carbon nanotubes (CNT), and polytetrafluoroethylene (PTFE) are integrated into a wire structure (designated as CuO/F/C(w); F, PTFE; C, CNT; w, wire) to maximize their respective functions. The realized architecture allows almost all CuO nanospheres to be exposed with effective TPI and good contact to conductive CNT, thus increasing the local CO2 concentration on the CuO surface and enabling fast electron/mass transfer. As a result, the CuO/F/C(w) membrane attains a Faradaic efficiency of 56.8 % and a partial current density of 68.9 mA cm-2 for multicarbon products at -1.4 V (versus the reversible hydrogen electrode) in the H-type cell, far exceeding 10.1 % and 13.4 mA cm-2 for bare CuO.
科研通智能强力驱动
Strongly Powered by AbleSci AI