环境科学
湿地
河口
土壤碳
环境化学
总有机碳
生态学
化学
土壤科学
土壤水分
生物
作者
Jine Wei,Fenfen Zhang,Dongliang Ma,Jing Zhang,Yanling Zheng,Hongpo Dong,Liang Xia,Guoyu Yin,Ping Han,Min Liu,Lijun Hou
标识
DOI:10.1016/j.scitotenv.2023.162566
摘要
Microbial necromass is an important component of the stable soil organic carbon (SOC) pool. However, little is known about the spatial and seasonal patterns of soil microbial necromass and their influencing environmental factors in estuarine tidal wetlands. In the present study, amino sugars (ASs) as biomarkers of microbial necromass were investigated along the estuarine tidal wetlands of China. Microbial necromass carbon (C) contents were in the range of 1.2-6.7 mg g-1 (3.6 ± 2.2 mg g-1, n = 41) and 0.5-4.4 mg g-1 (2.3 ± 1.5 mg g-1, n = 41), which accounted for 17.3-66.5 % (44.8 % ± 16.8 %) and 8.9-45.0 % (31.0 % ± 13.7 %) of the SOC pool in the dry (March to April) and wet (August to September) seasons, respectively. At all sampling sites, fungal necromass C predominated over bacterial necromass C as a component of microbial necromass C. Compared to bacterial necromass C, fungal necromass C showed a stronger connection with ferrous oxides (Fe2+) and total Fe concentrations. Both fungal and bacterial necromass C contents revealed large spatial heterogeneity and declined in the estuarine tidal wetlands with the increase in latitude. Statistical analyses showed that the increases in salinity and pH in the estuarine tidal wetlands suppressed the accumulation of soil microbial necromass C.
科研通智能强力驱动
Strongly Powered by AbleSci AI