Meta Learning With Graph Attention Networks for Low-Data Drug Discovery

药物发现 计算机科学 机器学习 深度学习 人工智能 任务(项目管理) 图形 机制(生物学) 理论计算机科学 生物信息学 生物 认识论 哲学 经济 管理
作者
Qiujie Lv,Guanxing Chen,Ziduo Yang,Weihe Zhong,Calvin Yu‐Chian Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11218-11230 被引量:50
标识
DOI:10.1109/tnnls.2023.3250324
摘要

Finding candidate molecules with favorable pharmacological activity, low toxicity, and proper pharmacokinetic properties is an important task in drug discovery. Deep neural networks have made impressive progress in accelerating and improving drug discovery. However, these techniques rely on a large amount of label data to form accurate predictions of molecular properties. At each stage of the drug discovery pipeline, usually, only a few biological data of candidate molecules and derivatives are available, indicating that the application of deep neural networks for low-data drug discovery is still a formidable challenge. Here, we propose a meta learning architecture with graph attention network, Meta-GAT, to predict molecular properties in low-data drug discovery. The GAT captures the local effects of atomic groups at the atom level through the triple attentional mechanism and implicitly captures the interactions between different atomic groups at the molecular level. GAT is used to perceive molecular chemical environment and connectivity, thereby effectively reducing sample complexity. Meta-GAT further develops a meta learning strategy based on bilevel optimization, which transfers meta knowledge from other attribute prediction tasks to low-data target tasks. In summary, our work demonstrates how meta learning can reduce the amount of data required to make meaningful predictions of molecules in low-data scenarios. Meta learning is likely to become the new learning paradigm in low-data drug discovery. The source code is publicly available at: https://github.com/lol88/Meta-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助xiaoxiao采纳,获得10
1秒前
SYLH应助我有机会采纳,获得10
2秒前
萧水白发布了新的文献求助30
4秒前
FF完成签到 ,获得积分10
5秒前
发嗲的炳发布了新的文献求助10
5秒前
桃桃发布了新的文献求助10
6秒前
123456789完成签到,获得积分10
6秒前
flysky120发布了新的文献求助10
8秒前
8秒前
大方的梦柏完成签到,获得积分20
9秒前
英俊的铭应助乐观忆之采纳,获得10
10秒前
tdtk发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
12秒前
13秒前
活泼的踏歌完成签到,获得积分10
14秒前
15秒前
Ava应助积极的曼彤采纳,获得10
15秒前
俊秀的芫发布了新的文献求助10
16秒前
16秒前
爆米花应助flysky120采纳,获得30
16秒前
桃桃完成签到,获得积分10
17秒前
沐浴清风发布了新的文献求助10
17秒前
HXB发布了新的文献求助10
17秒前
18秒前
Akim应助zhangyan00004采纳,获得10
19秒前
For发布了新的文献求助10
20秒前
jiaxingsun发布了新的文献求助10
20秒前
叶文轩发布了新的文献求助30
21秒前
23秒前
24秒前
24秒前
25秒前
李颖发布了新的文献求助10
27秒前
李健应助wht采纳,获得10
27秒前
27秒前
usdivff发布了新的文献求助10
28秒前
wave完成签到 ,获得积分10
28秒前
斗罗大陆完成签到,获得积分10
30秒前
31秒前
Lucas应助shuang采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953205
求助须知:如何正确求助?哪些是违规求助? 3498532
关于积分的说明 11092425
捐赠科研通 3229120
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415