Meta Learning With Graph Attention Networks for Low-Data Drug Discovery

药物发现 计算机科学 机器学习 深度学习 人工智能 任务(项目管理) 图形 机制(生物学) 理论计算机科学 生物信息学 生物 认识论 哲学 经济 管理
作者
Qiujie Lv,Guanxing Chen,Ziduo Yang,Weihe Zhong,Calvin Yu‐Chian Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11218-11230 被引量:39
标识
DOI:10.1109/tnnls.2023.3250324
摘要

Finding candidate molecules with favorable pharmacological activity, low toxicity, and proper pharmacokinetic properties is an important task in drug discovery. Deep neural networks have made impressive progress in accelerating and improving drug discovery. However, these techniques rely on a large amount of label data to form accurate predictions of molecular properties. At each stage of the drug discovery pipeline, usually, only a few biological data of candidate molecules and derivatives are available, indicating that the application of deep neural networks for low-data drug discovery is still a formidable challenge. Here, we propose a meta learning architecture with graph attention network, Meta-GAT, to predict molecular properties in low-data drug discovery. The GAT captures the local effects of atomic groups at the atom level through the triple attentional mechanism and implicitly captures the interactions between different atomic groups at the molecular level. GAT is used to perceive molecular chemical environment and connectivity, thereby effectively reducing sample complexity. Meta-GAT further develops a meta learning strategy based on bilevel optimization, which transfers meta knowledge from other attribute prediction tasks to low-data target tasks. In summary, our work demonstrates how meta learning can reduce the amount of data required to make meaningful predictions of molecules in low-data scenarios. Meta learning is likely to become the new learning paradigm in low-data drug discovery. The source code is publicly available at: https://github.com/lol88/Meta-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助qym采纳,获得10
刚刚
琅琊为刃完成签到,获得积分10
1秒前
酷波er应助hhh采纳,获得10
1秒前
1秒前
小巧的香氛完成签到 ,获得积分10
2秒前
2秒前
2秒前
zxcv23发布了新的文献求助10
2秒前
没有名称发布了新的文献求助10
2秒前
3秒前
3秒前
zier完成签到 ,获得积分10
4秒前
阡陌完成签到,获得积分10
4秒前
华仔应助毕业就好采纳,获得10
4秒前
liyi发布了新的文献求助10
4秒前
难过小天鹅完成签到,获得积分10
5秒前
非常可爱发布了新的文献求助20
5秒前
eee发布了新的文献求助10
5秒前
幸福胡萝卜完成签到,获得积分10
5秒前
6秒前
科研通AI5应助琅琊为刃采纳,获得10
6秒前
6秒前
6秒前
6秒前
寒冷的奇异果完成签到,获得积分10
7秒前
hziyu发布了新的文献求助10
8秒前
8秒前
野性的南蕾完成签到,获得积分10
8秒前
毛毛哦啊发布了新的文献求助10
8秒前
zzzzzk发布了新的文献求助10
8秒前
8秒前
lalala发布了新的文献求助10
9秒前
三里墩头应助oldlee采纳,获得20
9秒前
9秒前
iNk应助西安小小朱采纳,获得10
9秒前
CodeCraft应助西安小小朱采纳,获得10
9秒前
无花果应助爱学习的小迟采纳,获得10
10秒前
哭泣的映寒完成签到 ,获得积分10
10秒前
xls完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672