Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI

磁共振成像 医学 异柠檬酸脱氢酶 端粒酶逆转录酶 胶质瘤 无线电技术 核医学 放射科 核磁共振 癌症研究 生物 端粒酶 基因 遗传学 物理
作者
Hongbo Zhang,Hanwen Zhang,Yuze Zhang,Beibei Zhou,Lei Wu,Lei Yi,Biao Huang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1441-1451 被引量:30
标识
DOI:10.1002/jmri.28671
摘要

Background Studies have shown that magnetic resonance imaging (MRI)‐based deep learning radiomics (DLR) has the potential to assess glioma grade; however, its role in predicting telomerase reverse transcriptase (TERT) promoter mutation status in patients with glioblastoma (GBM) remains unclear. Purpose To evaluate the value of deep learning (DL) in multiparametric MRI‐based radiomics in identifying TERT promoter mutations in patients with GBM preoperatively. Study Type Retrospective. Population A total of 274 patients with isocitrate dehydrogenase‐wildtype GBM were included in the study. The training and external validation cohorts included 156 (54.3 ± 12.7 years; 96 males) and 118 (54 .2 ± 13.4 years; 73 males) patients, respectively. Field Strength/Sequence Axial contrast‐enhanced T1‐weighted spin‐echo inversion recovery sequence (T1CE), T1‐weighted spin‐echo inversion recovery sequence (T1WI), and T2‐weighted spin‐echo inversion recovery sequence (T2WI) on 1.5‐T and 3.0‐T scanners were used in this study. Assessment Overall tumor area regions (the tumor core and edema) were segmented, and the radiomics and DL features were extracted from preprocessed multiparameter preoperative brain MRI images—T1WI, T1CE, and T2WI. A model based on the DLR signature, clinical signature, and clinical DLR (CDLR) nomogram was developed and validated to identify TERT promoter mutation status. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and logistic regression analysis were applied for feature selection and construction of radiomics and DL signatures. Results were considered statistically significant at P ‐value <0.05. Results The DLR signature showed the best discriminative power for predicting TERT promoter mutations, yielding an AUC of 0.990 and 0.890 in the training and external validation cohorts, respectively. Furthermore, the DLR signature outperformed CDLR nomogram ( P = 0.670) and significantly outperformed clinical models in the validation cohort. Data Conclusion The multiparameter MRI‐based DLR signature exhibited a promising performance for the assessment of TERT promoter mutations in patients with GBM, which could provide information for individualized treatment. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助C_采纳,获得10
刚刚
song发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
liuxianjia发布了新的文献求助10
2秒前
orixero应助WRWRWR采纳,获得10
2秒前
shuzhiyi关注了科研通微信公众号
2秒前
3秒前
琉璃草梦发布了新的文献求助10
3秒前
4秒前
大气藏鸟完成签到,获得积分10
4秒前
4秒前
4秒前
小莹完成签到,获得积分10
4秒前
afeiwoo完成签到,获得积分10
5秒前
杨安安发布了新的文献求助10
5秒前
安详砖家完成签到,获得积分10
6秒前
6秒前
7秒前
小飞飞发布了新的文献求助10
7秒前
YANHEN完成签到,获得积分20
7秒前
小蜗妞妞发布了新的文献求助10
8秒前
8秒前
木之夏完成签到,获得积分10
8秒前
霄学家完成签到 ,获得积分10
8秒前
哈哈哈完成签到,获得积分10
8秒前
戚小完成签到,获得积分10
8秒前
8秒前
从容前行完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
汉堡包应助youngshow采纳,获得10
9秒前
subulaxi完成签到,获得积分10
9秒前
10秒前
Celia发布了新的文献求助10
10秒前
HOAN应助开心青旋采纳,获得30
10秒前
洁净笙完成签到,获得积分10
10秒前
苹果文博发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710787
求助须知:如何正确求助?哪些是违规求助? 5200765
关于积分的说明 15262070
捐赠科研通 4863340
什么是DOI,文献DOI怎么找? 2610590
邀请新用户注册赠送积分活动 1560857
关于科研通互助平台的介绍 1518463