Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI

磁共振成像 医学 异柠檬酸脱氢酶 端粒酶逆转录酶 胶质瘤 无线电技术 核医学 放射科 核磁共振 癌症研究 生物 端粒酶 基因 遗传学 物理
作者
Hongbo Zhang,Hanwen Zhang,Yuze Zhang,Beibei Zhou,Lei Wu,Lei Yi,Biao Huang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1441-1451 被引量:28
标识
DOI:10.1002/jmri.28671
摘要

Background Studies have shown that magnetic resonance imaging (MRI)‐based deep learning radiomics (DLR) has the potential to assess glioma grade; however, its role in predicting telomerase reverse transcriptase (TERT) promoter mutation status in patients with glioblastoma (GBM) remains unclear. Purpose To evaluate the value of deep learning (DL) in multiparametric MRI‐based radiomics in identifying TERT promoter mutations in patients with GBM preoperatively. Study Type Retrospective. Population A total of 274 patients with isocitrate dehydrogenase‐wildtype GBM were included in the study. The training and external validation cohorts included 156 (54.3 ± 12.7 years; 96 males) and 118 (54 .2 ± 13.4 years; 73 males) patients, respectively. Field Strength/Sequence Axial contrast‐enhanced T1‐weighted spin‐echo inversion recovery sequence (T1CE), T1‐weighted spin‐echo inversion recovery sequence (T1WI), and T2‐weighted spin‐echo inversion recovery sequence (T2WI) on 1.5‐T and 3.0‐T scanners were used in this study. Assessment Overall tumor area regions (the tumor core and edema) were segmented, and the radiomics and DL features were extracted from preprocessed multiparameter preoperative brain MRI images—T1WI, T1CE, and T2WI. A model based on the DLR signature, clinical signature, and clinical DLR (CDLR) nomogram was developed and validated to identify TERT promoter mutation status. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and logistic regression analysis were applied for feature selection and construction of radiomics and DL signatures. Results were considered statistically significant at P ‐value <0.05. Results The DLR signature showed the best discriminative power for predicting TERT promoter mutations, yielding an AUC of 0.990 and 0.890 in the training and external validation cohorts, respectively. Furthermore, the DLR signature outperformed CDLR nomogram ( P = 0.670) and significantly outperformed clinical models in the validation cohort. Data Conclusion The multiparameter MRI‐based DLR signature exhibited a promising performance for the assessment of TERT promoter mutations in patients with GBM, which could provide information for individualized treatment. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rwq完成签到 ,获得积分10
1秒前
1秒前
苻安筠发布了新的文献求助30
1秒前
2秒前
吕小软发布了新的文献求助10
2秒前
麻先生关注了科研通微信公众号
2秒前
2秒前
2秒前
大个应助Shinewei采纳,获得30
2秒前
淡然的剑通完成签到 ,获得积分10
3秒前
3秒前
3秒前
qaq发布了新的文献求助10
3秒前
4秒前
悦耳扬发布了新的文献求助10
4秒前
4秒前
shan完成签到,获得积分10
4秒前
dzc完成签到,获得积分10
5秒前
YYYang完成签到,获得积分10
5秒前
是漏漏呀完成签到,获得积分10
5秒前
JIECHENG完成签到 ,获得积分10
5秒前
Julie发布了新的文献求助10
5秒前
江海客完成签到,获得积分10
6秒前
帕尼尼发布了新的文献求助10
6秒前
7秒前
ho应助鲨鱼娃采纳,获得30
7秒前
7秒前
7秒前
回复对方发布了新的文献求助10
7秒前
李健应助杨老板采纳,获得10
7秒前
Mcintosh完成签到 ,获得积分10
7秒前
fmh发布了新的文献求助10
8秒前
8秒前
tdtk发布了新的文献求助10
8秒前
LiuSD发布了新的文献求助10
8秒前
syl完成签到 ,获得积分10
8秒前
奋斗的凡发布了新的文献求助10
9秒前
10秒前
10秒前
ixueyi完成签到,获得积分10
10秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388804
求助须知:如何正确求助?哪些是违规求助? 4511068
关于积分的说明 14037587
捐赠科研通 4421835
什么是DOI,文献DOI怎么找? 2428954
邀请新用户注册赠送积分活动 1421511
关于科研通互助平台的介绍 1400661