Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI

磁共振成像 医学 异柠檬酸脱氢酶 端粒酶逆转录酶 胶质瘤 无线电技术 核医学 放射科 核磁共振 癌症研究 生物 端粒酶 基因 遗传学 物理
作者
Hongbo Zhang,Hanwen Zhang,Yuze Zhang,Beibei Zhou,Lei Wu,Lei Yi,Biao Huang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1441-1451 被引量:21
标识
DOI:10.1002/jmri.28671
摘要

Studies have shown that magnetic resonance imaging (MRI)-based deep learning radiomics (DLR) has the potential to assess glioma grade; however, its role in predicting telomerase reverse transcriptase (TERT) promoter mutation status in patients with glioblastoma (GBM) remains unclear.To evaluate the value of deep learning (DL) in multiparametric MRI-based radiomics in identifying TERT promoter mutations in patients with GBM preoperatively.Retrospective.A total of 274 patients with isocitrate dehydrogenase-wildtype GBM were included in the study. The training and external validation cohorts included 156 (54.3 ± 12.7 years; 96 males) and 118 (54 .2 ± 13.4 years; 73 males) patients, respectively.Axial contrast-enhanced T1-weighted spin-echo inversion recovery sequence (T1CE), T1-weighted spin-echo inversion recovery sequence (T1WI), and T2-weighted spin-echo inversion recovery sequence (T2WI) on 1.5-T and 3.0-T scanners were used in this study.Overall tumor area regions (the tumor core and edema) were segmented, and the radiomics and DL features were extracted from preprocessed multiparameter preoperative brain MRI images-T1WI, T1CE, and T2WI. A model based on the DLR signature, clinical signature, and clinical DLR (CDLR) nomogram was developed and validated to identify TERT promoter mutation status.The Mann-Whitney U test, Pearson test, least absolute shrinkage and selection operator, and logistic regression analysis were applied for feature selection and construction of radiomics and DL signatures. Results were considered statistically significant at P-value <0.05.The DLR signature showed the best discriminative power for predicting TERT promoter mutations, yielding an AUC of 0.990 and 0.890 in the training and external validation cohorts, respectively. Furthermore, the DLR signature outperformed CDLR nomogram (P = 0.670) and significantly outperformed clinical models in the validation cohort.The multiparameter MRI-based DLR signature exhibited a promising performance for the assessment of TERT promoter mutations in patients with GBM, which could provide information for individualized treatment.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研达人发布了新的文献求助10
3秒前
3秒前
3秒前
cherry bomb完成签到,获得积分10
3秒前
朱建军应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
慕青应助Ace采纳,获得10
7秒前
7秒前
9秒前
ha发布了新的文献求助10
9秒前
songsong668发布了新的文献求助10
12秒前
阿秋发布了新的文献求助30
13秒前
14秒前
Ava应助qyang采纳,获得10
14秒前
情怀应助haochi采纳,获得30
16秒前
17秒前
17秒前
18秒前
19秒前
20秒前
20秒前
Ace发布了新的文献求助10
21秒前
songsong668完成签到,获得积分10
21秒前
阿秋完成签到,获得积分10
22秒前
坦率不惜完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
科研达人发布了新的文献求助30
23秒前
qyang发布了新的文献求助10
26秒前
潘潘发布了新的文献求助10
26秒前
上官若男应助科多兽骑士采纳,获得10
27秒前
啦啦啦发布了新的文献求助10
28秒前
可人不是旋律完成签到,获得积分20
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629