Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI

磁共振成像 医学 异柠檬酸脱氢酶 端粒酶逆转录酶 胶质瘤 无线电技术 核医学 放射科 核磁共振 癌症研究 生物 端粒酶 基因 遗传学 物理
作者
Hongbo Zhang,Hanwen Zhang,Yuze Zhang,Beibei Zhou,Lei Wu,Lei Yi,Biao Huang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1441-1451 被引量:11
标识
DOI:10.1002/jmri.28671
摘要

Studies have shown that magnetic resonance imaging (MRI)-based deep learning radiomics (DLR) has the potential to assess glioma grade; however, its role in predicting telomerase reverse transcriptase (TERT) promoter mutation status in patients with glioblastoma (GBM) remains unclear.To evaluate the value of deep learning (DL) in multiparametric MRI-based radiomics in identifying TERT promoter mutations in patients with GBM preoperatively.Retrospective.A total of 274 patients with isocitrate dehydrogenase-wildtype GBM were included in the study. The training and external validation cohorts included 156 (54.3 ± 12.7 years; 96 males) and 118 (54 .2 ± 13.4 years; 73 males) patients, respectively.Axial contrast-enhanced T1-weighted spin-echo inversion recovery sequence (T1CE), T1-weighted spin-echo inversion recovery sequence (T1WI), and T2-weighted spin-echo inversion recovery sequence (T2WI) on 1.5-T and 3.0-T scanners were used in this study.Overall tumor area regions (the tumor core and edema) were segmented, and the radiomics and DL features were extracted from preprocessed multiparameter preoperative brain MRI images-T1WI, T1CE, and T2WI. A model based on the DLR signature, clinical signature, and clinical DLR (CDLR) nomogram was developed and validated to identify TERT promoter mutation status.The Mann-Whitney U test, Pearson test, least absolute shrinkage and selection operator, and logistic regression analysis were applied for feature selection and construction of radiomics and DL signatures. Results were considered statistically significant at P-value <0.05.The DLR signature showed the best discriminative power for predicting TERT promoter mutations, yielding an AUC of 0.990 and 0.890 in the training and external validation cohorts, respectively. Furthermore, the DLR signature outperformed CDLR nomogram (P = 0.670) and significantly outperformed clinical models in the validation cohort.The multiparameter MRI-based DLR signature exhibited a promising performance for the assessment of TERT promoter mutations in patients with GBM, which could provide information for individualized treatment.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助开朗以亦采纳,获得10
1秒前
2秒前
8秒前
DR-JHan完成签到,获得积分10
8秒前
JETSTREAM完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
9秒前
高兴英发布了新的文献求助10
10秒前
郭囯完成签到,获得积分10
11秒前
wc发布了新的文献求助10
13秒前
14秒前
沙沙完成签到,获得积分20
14秒前
酸奶巧克力完成签到,获得积分10
16秒前
16秒前
Jasper应助苏78采纳,获得10
17秒前
黑喂狗狗发布了新的文献求助10
17秒前
重要的天空完成签到 ,获得积分10
18秒前
爆米花应助李昕123采纳,获得10
19秒前
20秒前
你好完成签到 ,获得积分10
21秒前
fox完成签到,获得积分10
23秒前
26秒前
小菜鸡完成签到,获得积分10
27秒前
++完成签到 ,获得积分10
28秒前
crystal完成签到,获得积分10
28秒前
30秒前
30秒前
Goodenough完成签到 ,获得积分10
31秒前
31秒前
Owen应助12采纳,获得10
33秒前
朴素的道罡完成签到,获得积分10
33秒前
谦让盼海完成签到,获得积分10
34秒前
春生发布了新的文献求助10
34秒前
34秒前
Shannon完成签到 ,获得积分10
35秒前
珠穆朗玛峰完成签到,获得积分10
36秒前
哈哈完成签到,获得积分10
38秒前
livingroom发布了新的文献求助30
38秒前
38秒前
WTC完成签到 ,获得积分10
39秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620